{"title":"Compliant Joints with Remote Centre of Compliance for the Improvement of the Motion Accuracy of a Gantry Stage","authors":"Pöhlmann Patrick, Peuker Christoph, Merx Marcel, Müller Jens, Ihlenfeldt Steffen","doi":"10.36897/jme/149902","DOIUrl":null,"url":null,"abstract":"Gantry stages, which consist of two parallel acting servo drives, are commonly used in machine tools. One drawback of this concept is the crosstalk between both drives, when a stiff mechanical coupling is present. This can lead to a limited bandwidth of the position control or to high reaction forces. One way to overcome these issues is the usage of joints to create an additional degree of freedom, which allows the drives to move independently. The design of these joints as compliant elements offers advantages compared to common rolling bearings, such as low friction and the absence of backlash. Another benefit is the variability in the design of the compliant joints allowing for adjustments to the position of each joint’s centre of compliance. Thus, the position of the resulting pivot, and the transfer matrix between the motion of the drives and the motion at the gantry stage’s tool centre point, change as well. This paper addresses the placement of the joint’s centre of compliance in order to improve motion accuracy. For this purpose, joints with modular arranged compliant links have been designed. The characteristics of the joints and their effect on the behaviour of the gantry stage are compared using analytical investigations as well as experimental results.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36897/jme/149902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Gantry stages, which consist of two parallel acting servo drives, are commonly used in machine tools. One drawback of this concept is the crosstalk between both drives, when a stiff mechanical coupling is present. This can lead to a limited bandwidth of the position control or to high reaction forces. One way to overcome these issues is the usage of joints to create an additional degree of freedom, which allows the drives to move independently. The design of these joints as compliant elements offers advantages compared to common rolling bearings, such as low friction and the absence of backlash. Another benefit is the variability in the design of the compliant joints allowing for adjustments to the position of each joint’s centre of compliance. Thus, the position of the resulting pivot, and the transfer matrix between the motion of the drives and the motion at the gantry stage’s tool centre point, change as well. This paper addresses the placement of the joint’s centre of compliance in order to improve motion accuracy. For this purpose, joints with modular arranged compliant links have been designed. The characteristics of the joints and their effect on the behaviour of the gantry stage are compared using analytical investigations as well as experimental results.
期刊介绍:
ournal of Machine Engineering is a scientific journal devoted to current issues of design and manufacturing - aided by innovative computer techniques and state-of-the-art computer systems - of products which meet the demands of the current global market. It favours solutions harmonizing with the up-to-date manufacturing strategies, the quality requirements and the needs of design, planning, scheduling and production process management. The Journal'' s subject matter also covers the design and operation of high efficient, precision, process machines. The Journal is a continuator of Machine Engineering Publisher for five years. The Journal appears quarterly, with a circulation of 100 copies, with each issue devoted entirely to a different topic. The papers are carefully selected and reviewed by distinguished world famous scientists and practitioners. The authors of the publications are eminent specialists from all over the world and Poland. Journal of Machine Engineering provides the best assistance to factories and universities. It enables factories to solve their difficult problems and manufacture good products at a low cost and fast rate. It enables educators to update their teaching and scientists to deepen their knowledge and pursue their research in the right direction.