S. Gonski, Micah J. Horwith, Skip Albertson, J. Bos, A. Brownlee, Natalie Coleman, C. Maloy, Mya Keyzers, C. Krembs, G. Pelletier, Elisa Rauschl, Holly R. Young, W. Cai
{"title":"Monitoring Ocean Acidification within State Borders: Lessons from Washington State (USA)","authors":"S. Gonski, Micah J. Horwith, Skip Albertson, J. Bos, A. Brownlee, Natalie Coleman, C. Maloy, Mya Keyzers, C. Krembs, G. Pelletier, Elisa Rauschl, Holly R. Young, W. Cai","doi":"10.1080/08920753.2021.1947130","DOIUrl":null,"url":null,"abstract":"Abstract The Washington State Department of Ecology conducted a large-scale ocean acidification (OA) study in greater Puget Sound to: (1) produce a marine carbon dioxide (CO2) system dataset capable of distinguishing between long-term anthropogenic changes and natural variability, (2) characterize how rivers and freshwater drive OA conditions in the region, and (3) understand the relative influence of cumulative anthropogenic forcing on regional OA conditions. Marine CO2 system data were collected monthly at 20 stations between October 2018 and February 2020. While additional data are still needed, the climate-level data collected thus far have uncovered novel insights into spatiotemporal distributions of and variability in the regional marine CO2 system, especially at low salinities in shallow, river-forced shelf regions. The data provide a strong foundation with which to continue monitoring OA conditions across the region. More importantly, this work represents the first successful long-term OA monitoring program undertaken at the state-level by a regulatory agency. Therefore, we offer the work described herein as a blueprint to help state and local scientists and environmental and natural resource managers develop, implement, and conduct long-term OA monitoring programs and studies in their own contexts and jurisdictions.","PeriodicalId":50995,"journal":{"name":"Coastal Management","volume":"49 1","pages":"487 - 509"},"PeriodicalIF":1.7000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/08920753.2021.1947130","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The Washington State Department of Ecology conducted a large-scale ocean acidification (OA) study in greater Puget Sound to: (1) produce a marine carbon dioxide (CO2) system dataset capable of distinguishing between long-term anthropogenic changes and natural variability, (2) characterize how rivers and freshwater drive OA conditions in the region, and (3) understand the relative influence of cumulative anthropogenic forcing on regional OA conditions. Marine CO2 system data were collected monthly at 20 stations between October 2018 and February 2020. While additional data are still needed, the climate-level data collected thus far have uncovered novel insights into spatiotemporal distributions of and variability in the regional marine CO2 system, especially at low salinities in shallow, river-forced shelf regions. The data provide a strong foundation with which to continue monitoring OA conditions across the region. More importantly, this work represents the first successful long-term OA monitoring program undertaken at the state-level by a regulatory agency. Therefore, we offer the work described herein as a blueprint to help state and local scientists and environmental and natural resource managers develop, implement, and conduct long-term OA monitoring programs and studies in their own contexts and jurisdictions.
期刊介绍:
Coastal Management is an international peer-reviewed, applied research journal dedicated to exploring the technical, applied ecological, legal, political, social, and policy issues relating to the use of coastal and ocean resources and environments on a global scale. The journal presents timely information on management tools and techniques as well as recent findings from research and analysis that bear directly on management and policy. Findings must be grounded in the current peer reviewed literature and relevant studies. Articles must contain a clear and relevant management component. Preference is given to studies of interest to an international readership, but case studies are accepted if conclusions are derived from acceptable evaluative methods, reference to comparable cases, and related to peer reviewed studies.