Precision cutting of single crystal silicon using CBN tool with large top corner radius

Yuya Kobaru, E. Kondo, R. Iwamoto
{"title":"Precision cutting of single crystal silicon using CBN tool with large top corner radius","authors":"Yuya Kobaru, E. Kondo, R. Iwamoto","doi":"10.1504/IJNM.2017.10004722","DOIUrl":null,"url":null,"abstract":"A lot of studies on the ultra-precision cutting of single crystal silicon have been reported and they used the diamond cutting tools. However, the diamond cutting tools are very expensive. Therefore, if the single crystal diamond tools were replaced with sintered CBN tools, the cost of machining could be fairly reduced. However, it is easily expected that the CBN tools wear out faster than the diamond tools. Therefore, it is very important to find out the optimum cutting conditions in order to reduce tool wear. In this study, precision cutting of single crystal silicon was machined with using CBN cutting tools having chamfer at cutting edge and large nose radius, and the effect of feed rate, cutting speed, depth of cut and nose radius on the tool wear were studied. As a result, the local minimum of width of flank wear land appeared at the feed rate of 30~50 µm/rev.","PeriodicalId":14170,"journal":{"name":"International Journal of Nanomanufacturing","volume":"13 1","pages":"170"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNM.2017.10004722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

A lot of studies on the ultra-precision cutting of single crystal silicon have been reported and they used the diamond cutting tools. However, the diamond cutting tools are very expensive. Therefore, if the single crystal diamond tools were replaced with sintered CBN tools, the cost of machining could be fairly reduced. However, it is easily expected that the CBN tools wear out faster than the diamond tools. Therefore, it is very important to find out the optimum cutting conditions in order to reduce tool wear. In this study, precision cutting of single crystal silicon was machined with using CBN cutting tools having chamfer at cutting edge and large nose radius, and the effect of feed rate, cutting speed, depth of cut and nose radius on the tool wear were studied. As a result, the local minimum of width of flank wear land appeared at the feed rate of 30~50 µm/rev.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大顶角半径CBN刀具对单晶硅的精密切削
对单晶硅的超精密切削进行了大量的研究,并使用了金刚石刀具。然而,金刚石切割工具非常昂贵。因此,如果用烧结CBN刀具代替单晶金刚石刀具,则可以大大降低加工成本。然而,很容易预计CBN工具比金刚石工具磨损得更快。因此,找出最佳切削条件以减少刀具磨损是非常重要的。本研究采用CBN切削刀具对单晶硅进行了精密切削,研究了进给量、切削速度、切削深度和刀尖半径对刀具磨损的影响。结果表明,在30~50µm/rev的进给速度下,出现了侧面磨损区宽度的局部最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Nanomanufacturing
International Journal of Nanomanufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
0.60
自引率
0.00%
发文量
0
期刊最新文献
Study on the effect of self-heating effect of bulk acoustic wave filter on the interpolation loss in the band Design and simulation of LDO circuit Research on non-contact ultrasonic vibration assisted rotating electrical discharge machining (EDM) machine tool Influence of rake angle and nose radius on optical silicon nanomachining feed rate and surface quality: a modelling, prediction and optimisation study Construction C/g-C3N4 with synergistic performance toward high photocatalytic performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1