Boundary layer profile of decaying and non-decaying tropical storms near landfall

IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric Science Letters Pub Date : 2023-08-27 DOI:10.1002/asl.1189
Enoch Yan Lok Tsui, Pak Wai Chan, Ralf Toumi
{"title":"Boundary layer profile of decaying and non-decaying tropical storms near landfall","authors":"Enoch Yan Lok Tsui,&nbsp;Pak Wai Chan,&nbsp;Ralf Toumi","doi":"10.1002/asl.1189","DOIUrl":null,"url":null,"abstract":"<p>The vertical profile of the wind structure of translating tropical cyclones, including the associated azimuthal asymmetry, has been the subject of existing theoretical and observational studies using dropsondes. Most of these studies are based on data collected from relatively strong cyclones over the Atlantic. Here we explore the tropical cyclone boundary layer wind profile of mainly relatively weak landfalling cyclones near Hong Kong. We find that decaying tropical storms have a much larger mid- to low-level inflow angle than those that are intensifying or in steady-state. The inflow angles of intensifying, steady-state and decaying tropical storms converge towards the top of the boundary layer. The wind speed reduces through the boundary layer in a similar way in all three cases. The combination of these factors means that decaying tropical storms have stronger inflow than intensifying and steady-state ones. We attribute these local effects to remote enhanced surface friction over land when the storms are weakening.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1189","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1189","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The vertical profile of the wind structure of translating tropical cyclones, including the associated azimuthal asymmetry, has been the subject of existing theoretical and observational studies using dropsondes. Most of these studies are based on data collected from relatively strong cyclones over the Atlantic. Here we explore the tropical cyclone boundary layer wind profile of mainly relatively weak landfalling cyclones near Hong Kong. We find that decaying tropical storms have a much larger mid- to low-level inflow angle than those that are intensifying or in steady-state. The inflow angles of intensifying, steady-state and decaying tropical storms converge towards the top of the boundary layer. The wind speed reduces through the boundary layer in a similar way in all three cases. The combination of these factors means that decaying tropical storms have stronger inflow than intensifying and steady-state ones. We attribute these local effects to remote enhanced surface friction over land when the storms are weakening.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热带风暴在登陆时衰减和非衰减的边界层剖面图
平动型热带气旋风结构的垂直剖面图,包括相关的方位角不对称,一直是现有利用下投探空仪进行理论和观测研究的主题。这些研究大多是基于从大西洋上空相对较强的气旋中收集的数据。在此,我们探讨了香港附近主要是相对较弱的登陆气旋的热带气旋边界层风廓线。我们发现,衰退热带风暴的中低层入流角比正在增强或处于稳定状态的热带风暴大得多。增强型、稳态型和衰减型热带风暴的入流角向边界层顶部汇聚。在这三种情况下,风速通过边界层以相似的方式减小。这些因素的结合意味着,衰减的热带风暴比增强和稳定状态的热带风暴有更强的流入。我们将这些局部效应归因于风暴减弱时陆地表面摩擦的远程增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Science Letters
Atmospheric Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.90
自引率
3.30%
发文量
73
审稿时长
>12 weeks
期刊介绍: Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques. We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.
期刊最新文献
Issue Information Change detection of the Köppen climate zones in Southeastern Europe Issue Information Are convection-permitting climate projections reliable for urban planning over Africa? A case study of Johannesburg Diurnal asymmetry of surface albedo in a semi-arid grassland over the China's Loess Plateau
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1