R. Sujith, S. Jothi, A. Zimmermann, F. Aldinger, Ravi Kumar
{"title":"Mechanical behaviour of polymer derived ceramics – a review","authors":"R. Sujith, S. Jothi, A. Zimmermann, F. Aldinger, Ravi Kumar","doi":"10.1080/09506608.2020.1784616","DOIUrl":null,"url":null,"abstract":"ABSTRACT Since the last five decades, polymer-derived ceramics (PDCs) are in use and envisaged for a variety of applications. The transition of a precursor to an inorganic ceramic by pyrolysis and heat-treatment results in either amorphous or nanocrystalline composites with the evolution of phases strongly controlled by the processing conditions. Understanding the deformation behaviour under ambient conditions and at elevated temperatures is key to designing these materials for long-term use. However, quantitative reliable estimation of mechanical properties is quite challenging due to its unique structure which in turn is strongly governed by the precursor chemistry. The mechanical behaviour of PDCs in the form of fibres, bulk and foams are different and they are discussed separately. Both experimental and simulation-based studies are considered in this review. Recently, additive manufacturing processes have been used for the fabrication of PDCs, the mechanical properties of which are also included in this review.","PeriodicalId":14427,"journal":{"name":"International Materials Reviews","volume":"66 1","pages":"426 - 449"},"PeriodicalIF":16.8000,"publicationDate":"2020-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09506608.2020.1784616","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Materials Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09506608.2020.1784616","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 32
Abstract
ABSTRACT Since the last five decades, polymer-derived ceramics (PDCs) are in use and envisaged for a variety of applications. The transition of a precursor to an inorganic ceramic by pyrolysis and heat-treatment results in either amorphous or nanocrystalline composites with the evolution of phases strongly controlled by the processing conditions. Understanding the deformation behaviour under ambient conditions and at elevated temperatures is key to designing these materials for long-term use. However, quantitative reliable estimation of mechanical properties is quite challenging due to its unique structure which in turn is strongly governed by the precursor chemistry. The mechanical behaviour of PDCs in the form of fibres, bulk and foams are different and they are discussed separately. Both experimental and simulation-based studies are considered in this review. Recently, additive manufacturing processes have been used for the fabrication of PDCs, the mechanical properties of which are also included in this review.
期刊介绍:
International Materials Reviews (IMR) is a comprehensive publication that provides in-depth coverage of the current state and advancements in various materials technologies. With contributions from internationally respected experts, IMR offers a thorough analysis of the subject matter. It undergoes rigorous evaluation by committees in the United States and United Kingdom for ensuring the highest quality of content.
Published by Sage on behalf of ASM International and the Institute of Materials, Minerals and Mining (UK), IMR is a valuable resource for professionals in the field. It is available online through Sage's platform, facilitating convenient access to its wealth of information.
Jointly produced by ASM International and the Institute of Materials, Minerals and Mining (UK), IMR focuses on technologies that impact industries dealing with metals, structural ceramics, composite materials, and electronic materials. Its coverage spans from practical applications to theoretical and practical aspects of material extraction, production, fabrication, properties, and behavior.