{"title":"An Adaptive Common Control Channel MAC with Transmission Opportunity in IEEE 802.11ac","authors":"Azhar A. Alsufyani, K. Almotairi","doi":"10.5614/ITBJ.ICT.RES.APPL.2021.14.3.3","DOIUrl":null,"url":null,"abstract":"Spectral utilization is a major challenge in wireless ad hoc networks due in part to using limited network resources. For ad hoc networks, the bandwidth is shared among stations that can transmit data at any point in time. It  is important to maximize the throughput to enhance the network service. In this paper, we propose an adaptive multi-channel access with transmission opportunity protocol for multi-channel ad hoc networks, called AMCA-TXOP. For the purpose of coordination, the proposed protocol uses an adaptive common control channel over which the stations negotiate their channel selection based on the entire available bandwidth and then switch to the negotiated channel. AMCA-TXOP requires a single radio interface so that each station can listen to the control channel, which can overhear all agreements made by the other stations. This allows parallel transmission to multiple stations over various channels, prioritizing data traffic to achieve the quality-of-service requirements. The proposed approach can work with the 802.11ac protocol, which has expanded the bandwidth to 160 MHz by channel bonding. Simulations were conducted to demonstrate the throughput gains that can be achieved using the AMCA-TXOP protocol. Moreover, we compared our protocol with  the IEEE 802.11ac standard protocols.","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":"14 1","pages":"240-256"},"PeriodicalIF":0.5000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/ITBJ.ICT.RES.APPL.2021.14.3.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Spectral utilization is a major challenge in wireless ad hoc networks due in part to using limited network resources. For ad hoc networks, the bandwidth is shared among stations that can transmit data at any point in time. It  is important to maximize the throughput to enhance the network service. In this paper, we propose an adaptive multi-channel access with transmission opportunity protocol for multi-channel ad hoc networks, called AMCA-TXOP. For the purpose of coordination, the proposed protocol uses an adaptive common control channel over which the stations negotiate their channel selection based on the entire available bandwidth and then switch to the negotiated channel. AMCA-TXOP requires a single radio interface so that each station can listen to the control channel, which can overhear all agreements made by the other stations. This allows parallel transmission to multiple stations over various channels, prioritizing data traffic to achieve the quality-of-service requirements. The proposed approach can work with the 802.11ac protocol, which has expanded the bandwidth to 160 MHz by channel bonding. Simulations were conducted to demonstrate the throughput gains that can be achieved using the AMCA-TXOP protocol. Moreover, we compared our protocol with  the IEEE 802.11ac standard protocols.
期刊介绍:
Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.