{"title":"A Model Stacking Approach for Forecasting Mortality","authors":"Jackie Li","doi":"10.1080/10920277.2022.2108453","DOIUrl":null,"url":null,"abstract":"This article adopts a machine learning method called stacked generalization for forecasting mortality. The main idea is to combine the forecasts from different projection models or algorithms in a certain way in order to increase the prediction accuracy. In particular, the article considers not just the traditionally used mortality projection models, such as the Lee–Carter and CBD models and their extensions, but also some learning algorithms called feedforward and recurrent neural networks that are starting to gain attention in the actuarial literature. For blending the different forecasts, the article examines a number of choices, including simple averaging, weighted averaging, linear regression, and neural network. Using U.S. mortality data, it is found that the proposed stacking approach often outperforms the cases where a projection model or algorithm is applied individually, and that neural networks tend to generate better results than many of the traditional models.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10920277.2022.2108453","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
This article adopts a machine learning method called stacked generalization for forecasting mortality. The main idea is to combine the forecasts from different projection models or algorithms in a certain way in order to increase the prediction accuracy. In particular, the article considers not just the traditionally used mortality projection models, such as the Lee–Carter and CBD models and their extensions, but also some learning algorithms called feedforward and recurrent neural networks that are starting to gain attention in the actuarial literature. For blending the different forecasts, the article examines a number of choices, including simple averaging, weighted averaging, linear regression, and neural network. Using U.S. mortality data, it is found that the proposed stacking approach often outperforms the cases where a projection model or algorithm is applied individually, and that neural networks tend to generate better results than many of the traditional models.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.