Opportunities Lost? Evolutionary Causes and Ecological Consequences of the Absence of Trehalose Digestion in Birds

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-04-06 DOI:10.1086/720232
Antonio Brun, Yocelyn T. Gutiérrez-Guerrero, Melisa E. Magallanes, E. Caviedes-Vidal, W. Karasov, C. Martinez del Rio
{"title":"Opportunities Lost? Evolutionary Causes and Ecological Consequences of the Absence of Trehalose Digestion in Birds","authors":"Antonio Brun, Yocelyn T. Gutiérrez-Guerrero, Melisa E. Magallanes, E. Caviedes-Vidal, W. Karasov, C. Martinez del Rio","doi":"10.1086/720232","DOIUrl":null,"url":null,"abstract":"Trehalose is a nonreducing disaccharide that is a primary storage and energy source in prokaryotes, yeasts, fungi, and invertebrates. Vertebrates digest trehalose with the intestinal brush border membrane (BBM) enzyme trehalase. Intestinal trehalase activity is reported to be either very low or absent in several bird species. We assayed trehalase activity in 19 avian species, used proteomic analysis to quantify its abundance in the intestinal BBM, and used analyses of available genomes to detect the presence of the gene that codes for trehalase (Treh). We found no intestinal trehalase activity in birds, trehalase was absent from the proteome of their intestinal BBM, and the gene coding for trehalase was absent in their genomes. Surveys of available transcriptomes support the hypothesis that Treh is absent in birds. The trehalase gene was found in the same conserved syntenic block within the genome of all vertebrates surveyed except birds. Our analysis suggests that Treh was lost in an inversion followed by a reinsertion of a large gene block. This event appears to have taken place after the split between crocodiles and birds and dinosaurs. Birds are unable to digest a common dietary sugar like trehalose because their ancestor lost the trehalase gene. The loss of this gene seems to represent an ecological cost, as insectivorous birds seem to be unable to digest a carbohydrate present in their prey. We also speculate that the paucity of mycophagy in birds is due to the presence of large amounts of this sugar in fungal tissues.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/720232","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Trehalose is a nonreducing disaccharide that is a primary storage and energy source in prokaryotes, yeasts, fungi, and invertebrates. Vertebrates digest trehalose with the intestinal brush border membrane (BBM) enzyme trehalase. Intestinal trehalase activity is reported to be either very low or absent in several bird species. We assayed trehalase activity in 19 avian species, used proteomic analysis to quantify its abundance in the intestinal BBM, and used analyses of available genomes to detect the presence of the gene that codes for trehalase (Treh). We found no intestinal trehalase activity in birds, trehalase was absent from the proteome of their intestinal BBM, and the gene coding for trehalase was absent in their genomes. Surveys of available transcriptomes support the hypothesis that Treh is absent in birds. The trehalase gene was found in the same conserved syntenic block within the genome of all vertebrates surveyed except birds. Our analysis suggests that Treh was lost in an inversion followed by a reinsertion of a large gene block. This event appears to have taken place after the split between crocodiles and birds and dinosaurs. Birds are unable to digest a common dietary sugar like trehalose because their ancestor lost the trehalase gene. The loss of this gene seems to represent an ecological cost, as insectivorous birds seem to be unable to digest a carbohydrate present in their prey. We also speculate that the paucity of mycophagy in birds is due to the presence of large amounts of this sugar in fungal tissues.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
失去了机会?鸟类缺乏海藻糖消化的进化原因和生态后果
海藻糖是一种不还原的二糖,是原核生物、酵母、真菌和无脊椎动物的主要储存和能量来源。脊椎动物利用肠道刷状边界膜(BBM)酶海藻糖来消化海藻糖。据报道,几种鸟类的肠道海藻糖活性很低或不存在。我们测定了19种鸟类的海藻糖活性,使用蛋白质组学分析来量化其在肠道BBM中的丰度,并使用可用基因组的分析来检测编码海藻糖(Treh)的基因的存在。我们在鸟类中没有发现肠道海藻糖活性,其肠道BBM的蛋白质组中没有海藻糖,其基因组中也没有编码海藻糖的基因。对现有转录组的调查支持Treh在鸟类中不存在的假设。在除鸟类外的所有脊椎动物的基因组中,都发现了海藻糖基因的同一保守同源区。我们的分析表明,Treh在一次反转中丢失,随后又重新插入了一个大的基因块。这一事件似乎发生在鳄鱼、鸟类和恐龙分裂之后。鸟类无法消化像海藻糖这样的常见食糖,因为它们的祖先失去了海藻糖基因。这种基因的丧失似乎代表了生态成本,因为食虫鸟似乎无法消化猎物体内的碳水化合物。我们还推测,鸟类中真菌吞噬能力的缺乏是由于真菌组织中存在大量这种糖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1