{"title":"Foliated corona decompositions","authors":"A. Naor, Robert Young","doi":"10.4310/acta.2022.v229.n1.a2","DOIUrl":null,"url":null,"abstract":"We prove that the $L_4$ norm of the vertical perimeter of any measurable subset of the $3$-dimensional Heisenberg group $\\mathbb{H}$ is at most a universal constant multiple of the (Heisenberg) perimeter of the subset. We show that this isoperimetric-type inequality is optimal in the sense that there are sets for which it fails to hold with the $L_4$ norm replaced by the $L_q$ norm for any $q<4$. This is in contrast to the $5$-dimensional setting, where the above result holds with the $L_4$ norm replaced by the $L_2$ norm. \nThe proof of the aforementioned isoperimetric inequality introduces a new structural methodology for understanding the geometry of surfaces in $\\mathbb{H}$. In previous work (2017) we showed how to obtain a hierarchical decomposition of Ahlfors-regular surfaces into pieces that are approximately intrinsic Lipschitz graphs. Here we prove that any such graph admits a foliated corona decomposition, which is a family of nested partitions into pieces that are close to ruled surfaces. \nApart from the intrinsic geometric and analytic significance of these results, which settle questions posed by Cheeger-Kleiner-Naor (2009) and Lafforgue-Naor (2012), they have several noteworthy implications, including the fact that the $L_1$ distortion of a word-ball of radius $n\\ge 2$ in the discrete $3$-dimensional Heisenberg group is bounded above and below by universal constant multiples of $\\sqrt[4]{\\log n}$; this is in contrast to higher dimensional Heisenberg groups, where our previous work showed that the distortion of a word-ball of radius $n\\ge 2$ is of order $\\sqrt{\\log n}$.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2020-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/acta.2022.v229.n1.a2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 16
Abstract
We prove that the $L_4$ norm of the vertical perimeter of any measurable subset of the $3$-dimensional Heisenberg group $\mathbb{H}$ is at most a universal constant multiple of the (Heisenberg) perimeter of the subset. We show that this isoperimetric-type inequality is optimal in the sense that there are sets for which it fails to hold with the $L_4$ norm replaced by the $L_q$ norm for any $q<4$. This is in contrast to the $5$-dimensional setting, where the above result holds with the $L_4$ norm replaced by the $L_2$ norm.
The proof of the aforementioned isoperimetric inequality introduces a new structural methodology for understanding the geometry of surfaces in $\mathbb{H}$. In previous work (2017) we showed how to obtain a hierarchical decomposition of Ahlfors-regular surfaces into pieces that are approximately intrinsic Lipschitz graphs. Here we prove that any such graph admits a foliated corona decomposition, which is a family of nested partitions into pieces that are close to ruled surfaces.
Apart from the intrinsic geometric and analytic significance of these results, which settle questions posed by Cheeger-Kleiner-Naor (2009) and Lafforgue-Naor (2012), they have several noteworthy implications, including the fact that the $L_1$ distortion of a word-ball of radius $n\ge 2$ in the discrete $3$-dimensional Heisenberg group is bounded above and below by universal constant multiples of $\sqrt[4]{\log n}$; this is in contrast to higher dimensional Heisenberg groups, where our previous work showed that the distortion of a word-ball of radius $n\ge 2$ is of order $\sqrt{\log n}$.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.