A. Mulyanto, W. Jatmiko, P. Mursanto, Purwono Prasetyawan, Rohmat Indra Borman
{"title":"A New Indonesian Traffic Obstacle Dataset and Performance Evaluation of YOLOv4 for ADAS","authors":"A. Mulyanto, W. Jatmiko, P. Mursanto, Purwono Prasetyawan, Rohmat Indra Borman","doi":"10.5614/ITBJ.ICT.RES.APPL.2021.14.3.6","DOIUrl":null,"url":null,"abstract":"Intelligent transport systems (ITS) are a promising area of studies. One implementation of ITS are advanced driver assistance systems (ADAS), involving the problem of obstacle detection in traffic. This study evaluated the YOLOv4 model as a state-of-the-art CNN-based one-stage detector to recognize traffic obstacles. A new dataset is proposed containing traffic obstacles on Indonesian roads for ADAS to detect traffic obstacles that are unique to Indonesia, such as pedicabs, street vendors, and bus shelters, and are not included in existing datasets. This study established a traffic obstacle dataset containing eleven object classes: cars, buses, trucks, bicycles, motorcycles, pedestrians, pedicabs, trees, bus shelters, traffic signs, and street vendors, with 26,016 labeled instances in 7,789 images. A performance analysis of traffic obstacle detection on Indonesian roads using the dataset created in this study was conducted using the YOLOv4 method.","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":"14 1","pages":"286-298"},"PeriodicalIF":0.5000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/ITBJ.ICT.RES.APPL.2021.14.3.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 11
Abstract
Intelligent transport systems (ITS) are a promising area of studies. One implementation of ITS are advanced driver assistance systems (ADAS), involving the problem of obstacle detection in traffic. This study evaluated the YOLOv4 model as a state-of-the-art CNN-based one-stage detector to recognize traffic obstacles. A new dataset is proposed containing traffic obstacles on Indonesian roads for ADAS to detect traffic obstacles that are unique to Indonesia, such as pedicabs, street vendors, and bus shelters, and are not included in existing datasets. This study established a traffic obstacle dataset containing eleven object classes: cars, buses, trucks, bicycles, motorcycles, pedestrians, pedicabs, trees, bus shelters, traffic signs, and street vendors, with 26,016 labeled instances in 7,789 images. A performance analysis of traffic obstacle detection on Indonesian roads using the dataset created in this study was conducted using the YOLOv4 method.
期刊介绍:
Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.