Hypoxia Decreases Thermal Sensitivity and Increases Thermal Breadth of Locomotion in the Invasive Freshwater Snail Potamopyrgus antipodarum

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-03-29 DOI:10.1086/719899
E. E. King, C. Williams, J. Stillman
{"title":"Hypoxia Decreases Thermal Sensitivity and Increases Thermal Breadth of Locomotion in the Invasive Freshwater Snail Potamopyrgus antipodarum","authors":"E. E. King, C. Williams, J. Stillman","doi":"10.1086/719899","DOIUrl":null,"url":null,"abstract":"Understanding the physiology of invasive species will contribute to better prediction and prevention measures to avoid the economic and environmental consequences of biological invasions. Predicting the future range of Potamopyrgus antipodarum, a globally invasive aquatic snail, relies on a comprehensive understanding of its physiological tolerances to individual and combined environmental stressors. We conducted a laboratory study to investigate the interacting effects of temperature and dissolved oxygen in shaping the abiotic niche of P. antipodarum. We generated thermal performance curves (7°C–35°C) for resting respiration rate and voluntary locomotor behaviors under normoxia and hypoxia to find the conditions that limited each performance. Extreme high (>30°C) and low (<12°C) temperatures limited respiration and activity, but respiration rate was most oxygen sensitive at low temperatures. Under hypoxic conditions, activity was less thermally sensitive. Increased activity under high temperatures (22°C–28°C) may be fueled by anaerobic metabolism. Relying on anaerobic energy is a time-limited survival strategy, so further warming and deoxygenation of freshwater systems may limit the spread of this very tolerant invasive species.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/719899","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Understanding the physiology of invasive species will contribute to better prediction and prevention measures to avoid the economic and environmental consequences of biological invasions. Predicting the future range of Potamopyrgus antipodarum, a globally invasive aquatic snail, relies on a comprehensive understanding of its physiological tolerances to individual and combined environmental stressors. We conducted a laboratory study to investigate the interacting effects of temperature and dissolved oxygen in shaping the abiotic niche of P. antipodarum. We generated thermal performance curves (7°C–35°C) for resting respiration rate and voluntary locomotor behaviors under normoxia and hypoxia to find the conditions that limited each performance. Extreme high (>30°C) and low (<12°C) temperatures limited respiration and activity, but respiration rate was most oxygen sensitive at low temperatures. Under hypoxic conditions, activity was less thermally sensitive. Increased activity under high temperatures (22°C–28°C) may be fueled by anaerobic metabolism. Relying on anaerobic energy is a time-limited survival strategy, so further warming and deoxygenation of freshwater systems may limit the spread of this very tolerant invasive species.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低氧降低入侵淡水蜗牛的热敏性和增加运动的热宽度
了解入侵物种的生理学将有助于更好地预测和预防措施,以避免生物入侵的经济和环境后果。预测全球入侵水生蜗牛Potamopyrgus antipodarum的未来范围,取决于对其对个体和组合环境压力的生理耐受性的全面了解。我们进行了一项实验室研究,以研究温度和溶解氧在形成P.antipodarum非生物生态位中的相互作用。我们生成了常氧和缺氧条件下静息呼吸速率和自主运动行为的热性能曲线(7°C–35°C),以找出限制每种性能的条件。极端高温(>30°C)和低温(<12°C)限制了呼吸和活动,但呼吸速率在低温下对氧气最敏感。在缺氧条件下,活动对热的敏感性较低。高温(22°C–28°C)下活性的增加可能是由厌氧代谢推动的。依靠厌氧能源是一种有时限的生存策略,因此淡水系统的进一步变暖和脱氧可能会限制这种非常耐受的入侵物种的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1