{"title":"Pseudo empirical likelihood inference for nonprobability survey samples","authors":"Yilin Chen, Pengfei Li, J. N. K. Rao, Changbao Wu","doi":"10.1002/cjs.11708","DOIUrl":null,"url":null,"abstract":"<p>In this article, we first provide an overview of two major developments on complex survey data analysis: the empirical likelihood methods and statistical inference with nonprobability survey samples. We highlight the important research contributions to the field of survey sampling in general and the two topics in particular by Canadian survey statisticians. We then propose new inferential procedures for analyzing nonprobability survey samples through the pseudo empirical likelihood approach. The proposed methods lead to point estimators asymptotically equivalent to those discussed in the recent literature but with more desirable features on confidence intervals such as range-respecting and data-driven orientation. Results from a simulation study demonstrate the superiority of the proposed methods in dealing with binary response variables.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"50 4","pages":"1166-1185"},"PeriodicalIF":1.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11708","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11708","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2
Abstract
In this article, we first provide an overview of two major developments on complex survey data analysis: the empirical likelihood methods and statistical inference with nonprobability survey samples. We highlight the important research contributions to the field of survey sampling in general and the two topics in particular by Canadian survey statisticians. We then propose new inferential procedures for analyzing nonprobability survey samples through the pseudo empirical likelihood approach. The proposed methods lead to point estimators asymptotically equivalent to those discussed in the recent literature but with more desirable features on confidence intervals such as range-respecting and data-driven orientation. Results from a simulation study demonstrate the superiority of the proposed methods in dealing with binary response variables.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.