{"title":"Wearable Dialysis: Current State and Perspectives","authors":"N. Bazaev, N. Zhilo, V. Grinval'd, S. Selishchev","doi":"10.5772/INTECHOPEN.75552","DOIUrl":null,"url":null,"abstract":"For more than four decades, scientists and engineers are trying to miniaturise dialysis machines to make them wearable. There are many reasons for that—from increased bio-compatibility and cost-efficiency to longer life expectancy and higher quality of life. That can be achieved by continuous blood treatment like in natural kidneys, which softly filter blood for 168 h a week when hemodialysis does that quickly—for approximately 20 h a week, which affects the organism in a bad way. Along with that, during hemodialysis, the patient must be near the dialysis machine, in contrary to wearable apparatus that can be carried anywhere. To achieve these advantages, dialysis fluid regeneration system must be developed, and it is a problem to be solved in the next few years. In this chapter, we describe current prototypes of wearable artificial kidneys, their design principles and results of our investigations.","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2018-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5772/INTECHOPEN.75552","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wearable technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.75552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1
Abstract
For more than four decades, scientists and engineers are trying to miniaturise dialysis machines to make them wearable. There are many reasons for that—from increased bio-compatibility and cost-efficiency to longer life expectancy and higher quality of life. That can be achieved by continuous blood treatment like in natural kidneys, which softly filter blood for 168 h a week when hemodialysis does that quickly—for approximately 20 h a week, which affects the organism in a bad way. Along with that, during hemodialysis, the patient must be near the dialysis machine, in contrary to wearable apparatus that can be carried anywhere. To achieve these advantages, dialysis fluid regeneration system must be developed, and it is a problem to be solved in the next few years. In this chapter, we describe current prototypes of wearable artificial kidneys, their design principles and results of our investigations.