{"title":"Dairy Product Intake Modifies MicroRNA Expression among Individuals with Hyperinsulinemia: A Post-Intervention Cross-Sectional Study","authors":"Leila Khorraminezhad, I. Rudkowska","doi":"10.1159/000523809","DOIUrl":null,"url":null,"abstract":"Introduction: MicroRNA (miRNA) profiles have been shown to change after intake of dairy products. Dysregulation of miRNA is associated with the changes in the level of glycemic parameters. The objectives are: (1) to investigate miRNA expression after consumption of dairy products and (2) to study the association between miRNAs and glycemic profile among individuals with hyperinsulinemia. Methods: In crossover design, 24 participants were randomized into 2 phases: high dairy (HD) (≥4 servings/day according to the Canadian food guide [2007]) and adequate dairy (AD) (≤2 servings/day) over 6 weeks. First, miRNAs were extracted from a pooled plasma sample of 10 subjects after HD and AD intervention which analyzed in duplicate by array hybridization (Affymetrix Gene Chip miRNA Array v. 4.0). Second, 6 miRNAs related to type 2 diabetes (T2D) were validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) from plasma of 24 participants. Results: Microarray analysis indicated that 297 miRNAs expressed differentially (FC ≥ ±1.2; p value <0.05) in a pooled plasma sample of 10 subjects. Among pooled miRNAs, the level of selected miRNAs, including miR-652-3p, miR-106b-5p, miR-93-5p, and miR-107 were downregulated; conversely, miR-223-3p and miR-122-5p were upregulated. After qRT-PCR validation, only the expression level of miR-106-5p tended to be increased after HD compared to AD (p = 0.06). After AD intervention, the level of fasting plasma glucose (FPG) and insulin and homeostatic model assessment of insulin resistance were negatively correlated with miR-122-5p. Similarly, negative correlation was found between miR-106-5p and FPG. Conclusion: The miRNAs profile was modified after HD compared to AD, and this may have role in modifying the risk of T2D (registration No. NCT02961179).","PeriodicalId":18030,"journal":{"name":"Lifestyle Genomics","volume":"15 1","pages":"77 - 86"},"PeriodicalIF":2.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifestyle Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000523809","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 4
Abstract
Introduction: MicroRNA (miRNA) profiles have been shown to change after intake of dairy products. Dysregulation of miRNA is associated with the changes in the level of glycemic parameters. The objectives are: (1) to investigate miRNA expression after consumption of dairy products and (2) to study the association between miRNAs and glycemic profile among individuals with hyperinsulinemia. Methods: In crossover design, 24 participants were randomized into 2 phases: high dairy (HD) (≥4 servings/day according to the Canadian food guide [2007]) and adequate dairy (AD) (≤2 servings/day) over 6 weeks. First, miRNAs were extracted from a pooled plasma sample of 10 subjects after HD and AD intervention which analyzed in duplicate by array hybridization (Affymetrix Gene Chip miRNA Array v. 4.0). Second, 6 miRNAs related to type 2 diabetes (T2D) were validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) from plasma of 24 participants. Results: Microarray analysis indicated that 297 miRNAs expressed differentially (FC ≥ ±1.2; p value <0.05) in a pooled plasma sample of 10 subjects. Among pooled miRNAs, the level of selected miRNAs, including miR-652-3p, miR-106b-5p, miR-93-5p, and miR-107 were downregulated; conversely, miR-223-3p and miR-122-5p were upregulated. After qRT-PCR validation, only the expression level of miR-106-5p tended to be increased after HD compared to AD (p = 0.06). After AD intervention, the level of fasting plasma glucose (FPG) and insulin and homeostatic model assessment of insulin resistance were negatively correlated with miR-122-5p. Similarly, negative correlation was found between miR-106-5p and FPG. Conclusion: The miRNAs profile was modified after HD compared to AD, and this may have role in modifying the risk of T2D (registration No. NCT02961179).
期刊介绍:
Lifestyle Genomics aims to provide a forum for highlighting new advances in the broad area of lifestyle-gene interactions and their influence on health and disease. The journal welcomes novel contributions that investigate how genetics may influence a person’s response to lifestyle factors, such as diet and nutrition, natural health products, physical activity, and sleep, amongst others. Additionally, contributions examining how lifestyle factors influence the expression/abundance of genes, proteins and metabolites in cell and animal models as well as in humans are also of interest. The journal will publish high-quality original research papers, brief research communications, reviews outlining timely advances in the field, and brief research methods pertaining to lifestyle genomics. It will also include a unique section under the heading “Market Place” presenting articles of companies active in the area of lifestyle genomics. Research articles will undergo rigorous scientific as well as statistical/bioinformatic review to ensure excellence.