Reinforcement learning paycheck optimization for multivariate financial goals

Q3 Economics, Econometrics and Finance Risk and Decision Analysis Pub Date : 2023-05-08 DOI:10.3233/rda-220025
Melda Alaluf, Giulia Crippa, Sinong Geng, Zijian Jing, Nikhil Krishnan, Sanjeev Kulkarni, Wyatt Navarro, R. Sircar, Jonathan Tang
{"title":"Reinforcement learning paycheck optimization for multivariate financial goals","authors":"Melda Alaluf, Giulia Crippa, Sinong Geng, Zijian Jing, Nikhil Krishnan, Sanjeev Kulkarni, Wyatt Navarro, R. Sircar, Jonathan Tang","doi":"10.3233/rda-220025","DOIUrl":null,"url":null,"abstract":"We study paycheck optimization, which examines how to allocate income in order to achieve several competing financial goals. For paycheck optimization, a quantitative methodology is missing, due to a lack of a suitable problem formulation. To deal with this issue, we formulate the problem as a utility maximization problem. The proposed formulation is able to (i) unify different financial goals; (ii) incorporate user preferences regarding the goals; (iii) handle stochastic interest rates. The proposed formulation also facilitates an end-to-end reinforcement learning solution, which is implemented on a variety of problem settings.","PeriodicalId":38805,"journal":{"name":"Risk and Decision Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk and Decision Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/rda-220025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 4

Abstract

We study paycheck optimization, which examines how to allocate income in order to achieve several competing financial goals. For paycheck optimization, a quantitative methodology is missing, due to a lack of a suitable problem formulation. To deal with this issue, we formulate the problem as a utility maximization problem. The proposed formulation is able to (i) unify different financial goals; (ii) incorporate user preferences regarding the goals; (iii) handle stochastic interest rates. The proposed formulation also facilitates an end-to-end reinforcement learning solution, which is implemented on a variety of problem settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多变量财务目标的强化学习工资优化
我们研究薪资优化,研究如何分配收入以实现几个相互竞争的财务目标。对于薪资优化,由于缺乏合适的问题公式,缺少定量方法。为了解决这个问题,我们将这个问题表述为效用最大化问题。拟议的提法能够(一)统一不同的财务目标;(ii)结合关于目标的用户偏好;(iii)处理随机利率。所提出的公式还促进了端到端的强化学习解决方案,该解决方案可在各种问题环境中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Risk and Decision Analysis
Risk and Decision Analysis Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
1.00
自引率
0.00%
发文量
0
期刊最新文献
An empirical study on the role of leadership development program and its impact on entrepreneurial activities Some systemic risk indicators A note on the recursive joint moments of discounted compound dependent renewal sums Return volatility transmission among Asian stock exchanges: Evidence from a heterogeneous market outlook Weighted Shapley values of efficient portfolios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1