{"title":"On the Roles of Complexity and Symmetry in Cued Tapping of Well-formed Complex Rhythms","authors":"R. Dean, D. Bulger, A. Milne","doi":"10.1525/mp.2021.39.2.202","DOIUrl":null,"url":null,"abstract":"Production of relatively few rhythms with non-isochronous beats has been studied. So we assess reproduction of most well-formed looped rhythms comprising K=2-11 cues (a uniform piano tone, indicating where participants should tap) and N=3-13 isochronous pulses (a uniform cymbal). Each rhythm had two different cue interonset intervals. We expected that many of the rhythms would be difficult to tap, because of ambiguous non-isochronous beats and syncopations, and that complexity and asymmetry would predict performance. 111 participants tapped 91 rhythms each heard over 129 pulses, starting as soon as they could. Whereas tap-cue concordance in prior studies was generally >> 90%, here only 52.2% of cues received a temporally congruent tap, and only 63% of taps coincided with a cue. Only −2 ms mean tap asynchrony was observed (whereas for non-musicians this value is usually c. −50 ms). Performances improved as rhythms progressed and were repeated, but precision varied substantially between participants and rhythms. Performances were autoregressive and mixed effects cross-sectional time series analyses retaining the integrity of all the individual time series revealed that performance worsened as complexity features K, N, and cue inter-onset interval entropy increased. Performance worsened with increasing R, the Long: short (L: s) cue interval ratio of each rhythm (indexing both complexity and asymmetry). Rhythm evenness and balance, and whether N was divisible by 2 or 3, were not useful predictors. Tap velocities positively predicted cue fulfilment. Our data indicate that study of a greater diversity of rhythms can broaden our impression of rhythm cognition.","PeriodicalId":47786,"journal":{"name":"Music Perception","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Music Perception","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1525/mp.2021.39.2.202","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MUSIC","Score":null,"Total":0}
引用次数: 2
Abstract
Production of relatively few rhythms with non-isochronous beats has been studied. So we assess reproduction of most well-formed looped rhythms comprising K=2-11 cues (a uniform piano tone, indicating where participants should tap) and N=3-13 isochronous pulses (a uniform cymbal). Each rhythm had two different cue interonset intervals. We expected that many of the rhythms would be difficult to tap, because of ambiguous non-isochronous beats and syncopations, and that complexity and asymmetry would predict performance. 111 participants tapped 91 rhythms each heard over 129 pulses, starting as soon as they could. Whereas tap-cue concordance in prior studies was generally >> 90%, here only 52.2% of cues received a temporally congruent tap, and only 63% of taps coincided with a cue. Only −2 ms mean tap asynchrony was observed (whereas for non-musicians this value is usually c. −50 ms). Performances improved as rhythms progressed and were repeated, but precision varied substantially between participants and rhythms. Performances were autoregressive and mixed effects cross-sectional time series analyses retaining the integrity of all the individual time series revealed that performance worsened as complexity features K, N, and cue inter-onset interval entropy increased. Performance worsened with increasing R, the Long: short (L: s) cue interval ratio of each rhythm (indexing both complexity and asymmetry). Rhythm evenness and balance, and whether N was divisible by 2 or 3, were not useful predictors. Tap velocities positively predicted cue fulfilment. Our data indicate that study of a greater diversity of rhythms can broaden our impression of rhythm cognition.
期刊介绍:
Music Perception charts the ongoing scholarly discussion and study of musical phenomena. Publishing original empirical and theoretical papers, methodological articles and critical reviews from renowned scientists and musicians, Music Perception is a repository of insightful research. The broad range of disciplines covered in the journal includes: •Psychology •Psychophysics •Linguistics •Neurology •Neurophysiology •Artificial intelligence •Computer technology •Physical and architectural acoustics •Music theory