{"title":"Spray synthesis of rapid recovery ZnO/polyaniline film ammonia sensor at room temperature","authors":"Yingze Bai, Xin Dong, Chuanyu Guo, Yingming Xu, Bin Wang, Xiaoli Cheng","doi":"10.1007/s11706-022-0620-x","DOIUrl":null,"url":null,"abstract":"<div><p>As an excellent room temperature sensing material, polyaniline (PANI) needs to be further investigated in the field of high sensitivity and sustainable gas sensors due to its long recovery time and difficulty to complete recovery. The ZnO/PANI film with p–n heterogeneous energy levels have successfully prepared by spraying ZnO nanorod synthesized by hydrothermal method on the PANI film rapidly synthesized at the gas—liquid interface. The presence of p–n heterogeneous energy levels enables the ZnO/PANI film to detect 0.1–100 ppm (1 ppm = 10<sup>−6</sup>) NH<sub>3</sub> at room temperature with the response value to 100 ppm NH<sub>3</sub> doubled (12.96) and the recovery time shortened to 1/5 (31.2 s). The ability of high response and fast recovery makes the ZnO/PANI film to be able to detect NH<sub>3</sub> at room temperature continuously. It provides a new idea for PANI to prepare sustainable room temperature sensor and promotes the development of room temperature sensor in public safety.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"16 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-022-0620-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
As an excellent room temperature sensing material, polyaniline (PANI) needs to be further investigated in the field of high sensitivity and sustainable gas sensors due to its long recovery time and difficulty to complete recovery. The ZnO/PANI film with p–n heterogeneous energy levels have successfully prepared by spraying ZnO nanorod synthesized by hydrothermal method on the PANI film rapidly synthesized at the gas—liquid interface. The presence of p–n heterogeneous energy levels enables the ZnO/PANI film to detect 0.1–100 ppm (1 ppm = 10−6) NH3 at room temperature with the response value to 100 ppm NH3 doubled (12.96) and the recovery time shortened to 1/5 (31.2 s). The ability of high response and fast recovery makes the ZnO/PANI film to be able to detect NH3 at room temperature continuously. It provides a new idea for PANI to prepare sustainable room temperature sensor and promotes the development of room temperature sensor in public safety.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.