{"title":"The mean value of the function \\frac{d(n)}{d^*(n)} in arithmetic progressions","authors":"Ouarda Bouakkaz, Abdallah Derbal","doi":"10.7546/nntdm.2023.29.3.445-453","DOIUrl":null,"url":null,"abstract":"Let $d(n)$ and $d^*(n)$ be, respectively, the number of divisors and the number of unitary divisors of an integer $n\\geq 1.$ A divisor $d$ of an integer is to be said unitary if it is prime over $\\frac{n}{d}.$ In this paper, we study the mean value of the function $D(n)=\\frac{d(n)}{d^*(n)}$ in the arithmetic progressions $ \\left\\lbrace l+mk \\mid m\\in\\mathbb{N}^* \\text{ and } (l, k)=1 \\right\\rbrace;$ this leads back to the study of the real function $x\\mapsto S(x;k,l)=\\underset{n\\equiv l[k]}{\\sum\\limits_{ n \\leq x}} D(n).$ We prove that $$ S(x;k,l)=A(k)x +\\mathcal{O}_{k}\\left(x\\exp \\left( -\\frac{\\theta}{2}\\sqrt{(2\\ln x)(\\ln\\ln x)}\\right) \\right) \\left( 0<\\theta<1 \\right),$$ where $\\quad A(k)=\\dfrac{c}{k}\\prod\\limits_{p\\mid k}\\left(1+\\dfrac{1}{2}\\sum\\limits_{n=2}^{+\\infty}\\dfrac{1}{p^{n}}\\right)^{-1}\\left( c=\\zeta(2)\\prod\\limits_{p} \\left(1-\\dfrac{1}{2p^2}+\\dfrac{1}{2p^3} \\right) \\right).$","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2023.29.3.445-453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $d(n)$ and $d^*(n)$ be, respectively, the number of divisors and the number of unitary divisors of an integer $n\geq 1.$ A divisor $d$ of an integer is to be said unitary if it is prime over $\frac{n}{d}.$ In this paper, we study the mean value of the function $D(n)=\frac{d(n)}{d^*(n)}$ in the arithmetic progressions $ \left\lbrace l+mk \mid m\in\mathbb{N}^* \text{ and } (l, k)=1 \right\rbrace;$ this leads back to the study of the real function $x\mapsto S(x;k,l)=\underset{n\equiv l[k]}{\sum\limits_{ n \leq x}} D(n).$ We prove that $$ S(x;k,l)=A(k)x +\mathcal{O}_{k}\left(x\exp \left( -\frac{\theta}{2}\sqrt{(2\ln x)(\ln\ln x)}\right) \right) \left( 0<\theta<1 \right),$$ where $\quad A(k)=\dfrac{c}{k}\prod\limits_{p\mid k}\left(1+\dfrac{1}{2}\sum\limits_{n=2}^{+\infty}\dfrac{1}{p^{n}}\right)^{-1}\left( c=\zeta(2)\prod\limits_{p} \left(1-\dfrac{1}{2p^2}+\dfrac{1}{2p^3} \right) \right).$