Manufacturing of high brightness dissolving pulp from sansevieria-trifasciata fiber by effective sequences processes

Yusnimar, Evelyn, Azka Aman, Chairul, Suci Rahmadahana, A. Amri
{"title":"Manufacturing of high brightness dissolving pulp from sansevieria-trifasciata fiber by effective sequences processes","authors":"Yusnimar, Evelyn, Azka Aman, Chairul, Suci Rahmadahana, A. Amri","doi":"10.21924/cst.7.1.2022.681","DOIUrl":null,"url":null,"abstract":"The need of dissolving pulp (DP) for rayon fiber production is increasing rapidly in recent years. Sustainable sources of DP raw materials and an effective manufacturing process are urgently required. This study aims to manufacture dissolving pulp (DP) with high brightness from Sansevieria-trifasciata (ST) fiber through the pre-hydrolysis, soda-Anthraquinone (Soda-AQ) cooking, and chlorine-free bleaching processes. The cellulose content, kappa number, pulp yield, and viscosity were analyzed. The results showed that the ?-cellulose content in ST raw material (39.43%) was relatively similar to the ?-cellulose content in Acacia pulping kraft (39.2%). Furthermore, the variations in pre-hydrolysis time affected the Kappa number, pulp yield, and viscosity. The DP obtained by the elementary chlorine-free (ECF) bleaching process had a viscosity of 9.3 cP, ?-cellulose content of 97.7%, and the brightness of 90.1% which was higher than the ISO standard of pulp brightness. The high DP brightness obtained from this unique combination of pre-hydrolysis, soda-AQ cooking and chlorine-free bleaching sequences has great potential for further development, as it can be used in viscose rayon staple fibers production.","PeriodicalId":36437,"journal":{"name":"Communications in Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21924/cst.7.1.2022.681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

The need of dissolving pulp (DP) for rayon fiber production is increasing rapidly in recent years. Sustainable sources of DP raw materials and an effective manufacturing process are urgently required. This study aims to manufacture dissolving pulp (DP) with high brightness from Sansevieria-trifasciata (ST) fiber through the pre-hydrolysis, soda-Anthraquinone (Soda-AQ) cooking, and chlorine-free bleaching processes. The cellulose content, kappa number, pulp yield, and viscosity were analyzed. The results showed that the ?-cellulose content in ST raw material (39.43%) was relatively similar to the ?-cellulose content in Acacia pulping kraft (39.2%). Furthermore, the variations in pre-hydrolysis time affected the Kappa number, pulp yield, and viscosity. The DP obtained by the elementary chlorine-free (ECF) bleaching process had a viscosity of 9.3 cP, ?-cellulose content of 97.7%, and the brightness of 90.1% which was higher than the ISO standard of pulp brightness. The high DP brightness obtained from this unique combination of pre-hydrolysis, soda-AQ cooking and chlorine-free bleaching sequences has great potential for further development, as it can be used in viscose rayon staple fibers production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用有效序列法制备高亮度三叶纤维溶解纸浆
近年来,人造纤维生产对溶解纸浆(DP)的需求迅速增加。迫切需要可持续的DP原材料来源和有效的制造工艺。本研究的目的是通过预水解、碱-蒽醌蒸煮和无氯漂白等工艺,制备高亮度的可溶性浆料(DP)。对纤维素含量、kappa值、出浆率和粘度进行了分析。结果表明,ST原料中-纤维素含量(39.43%)与金合欢制浆硫酸盐中的-纤维素含量(39.2%)较为接近。此外,预水解时间的变化影响了Kappa数、纸浆得率和粘度。无初等氯漂白得到的纸浆粘度为9.3 cP, -纤维素含量为97.7%,亮度为90.1%,高于ISO纸浆亮度标准。通过预水解、碱- aq蒸煮和无氯漂白的独特组合获得的高DP亮度具有很大的发展潜力,因为它可以用于粘胶短纤维的生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications in Science and Technology
Communications in Science and Technology Engineering-Engineering (all)
CiteScore
3.20
自引率
0.00%
发文量
13
审稿时长
24 weeks
期刊最新文献
Improving the activity of CO2 capturing from flue gas by membrane gas – solvent absorption process Efficient removal of amoxicillin, ciprofloxacin, and tetracycline from aqueous solution by Cu-Bi2O3 synthesized using precipitation-assisted-microwave Development of CaCO3 novel morphology through crystal lattice modification assisted by sulfate incorporation and vibration The impact of bacillus sp. NTLG2-20 and reduced nitrogen fertilization on soil properties and peanut yield Simulation and optimization of fatty acid extraction parameters from Nannochloropsis sp. using supercritical carbon dioxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1