Obtaining Water from Air Using Porous Metal–Organic Frameworks (MOFs)

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Topics in Current Chemistry Pub Date : 2022-10-21 DOI:10.1007/s41061-022-00410-9
Brij Mohan, Suresh Kumar, Quansheng Chen
{"title":"Obtaining Water from Air Using Porous Metal–Organic Frameworks (MOFs)","authors":"Brij Mohan,&nbsp;Suresh Kumar,&nbsp;Quansheng Chen","doi":"10.1007/s41061-022-00410-9","DOIUrl":null,"url":null,"abstract":"<div><p>Water collection from moisture in air, i.e., atmospheric water harvesting, is an urgent future need for society. It can be used for water production everywhere and anytime as an alternative water source in remote areas. However, water harvesting and collection usually relies on desalination, fog, and dewing harvesting, which are energy intensive. In this respect, metal–organic frameworks (MOFs) have broad applicability for water harvesting in water-scarce areas; therefore, the current discussion focuses on this approach. Furthermore, recent progress on MOFs for moisture harvesters is critically discussed. In addition, the design, operation, and water harvesting mechanisms of MOFs are studied. Finally, we discuss critical points for future research for the design of new MOFs as moisture harvesters for use in practical applications.</p><h3>Graphical Abstract</h3><p>MOF adsorbents offer excellent operating capacity in various temperature and pressure ranges. Rational water harvesters can thus be developed by adjusting structural properties such as the porosity, functionalities, and metal centers, thereby enabling new devices to produce water even in remote areas.</p>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-022-00410-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

Abstract

Water collection from moisture in air, i.e., atmospheric water harvesting, is an urgent future need for society. It can be used for water production everywhere and anytime as an alternative water source in remote areas. However, water harvesting and collection usually relies on desalination, fog, and dewing harvesting, which are energy intensive. In this respect, metal–organic frameworks (MOFs) have broad applicability for water harvesting in water-scarce areas; therefore, the current discussion focuses on this approach. Furthermore, recent progress on MOFs for moisture harvesters is critically discussed. In addition, the design, operation, and water harvesting mechanisms of MOFs are studied. Finally, we discuss critical points for future research for the design of new MOFs as moisture harvesters for use in practical applications.

Graphical Abstract

MOF adsorbents offer excellent operating capacity in various temperature and pressure ranges. Rational water harvesters can thus be developed by adjusting structural properties such as the porosity, functionalities, and metal centers, thereby enabling new devices to produce water even in remote areas.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多孔金属-有机骨架(mof)从空气中获取水分
从空气中的水分中收集水分,即大气集水,是未来社会的迫切需要。它可以随时随地用于生产水,作为偏远地区的替代水源。然而,水的收集通常依赖于海水淡化、雾和露水的收集,这些都是能源密集型的。在这方面,金属-有机框架对缺水地区的集水具有广泛的适用性;因此,当前的讨论集中在这种方法上。此外,本文还对水分采集器mof的最新进展进行了讨论。此外,还对mof的设计、运行和集水机理进行了研究。最后,我们讨论了设计用于实际应用的新型mof集湿器的未来研究要点。mof吸附剂在各种温度和压力范围内都具有良好的操作能力。因此,合理的水收集器可以通过调整孔隙度、功能和金属中心等结构特性来开发,从而使新设备即使在偏远地区也能采水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Topics in Current Chemistry
Topics in Current Chemistry Chemistry-General Chemistry
CiteScore
13.70
自引率
1.20%
发文量
48
期刊介绍: Topics in Current Chemistry is a journal that presents critical reviews of present and future trends in modern chemical research. It covers all areas of chemical science, including interactions with related disciplines like biology, medicine, physics, and materials science. The articles in this journal are organized into thematic collections, offering a comprehensive perspective on emerging research to non-specialist readers in academia or industry. Each review article focuses on one aspect of the topic and provides a critical survey, placing it in the context of the collection. Selected examples highlight significant developments from the past 5 to 10 years. Instead of providing an exhaustive summary or extensive data, the articles concentrate on methodological thinking. This approach allows non-specialist readers to understand the information fully and presents the potential prospects for future developments.
期刊最新文献
Structure-Based Drug Design of RdRp Inhibitors against SARS-CoV-2 The Intramolecular Povarov Tool in the Construction of Fused Nitrogen-Containing Heterocycles Photothermal Catalytic CO2 Conversion: Beyond Catalysis and Photocatalysis Multicomponent Reactions Using C,N-Binucleophilic Nature of Aminopyrazoles: Construction of Pyrazole-Fused Heterocycles Laser-Induced Transfer of Functional Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1