Retraction: Abrasive Wear Performance of Aluminium Modified Epoxy-Glass Fiber Composites

IF 2.4 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Molecular and Engineering Materials Pub Date : 2021-07-20 DOI:10.1142/s2251237321930011
Vikram G. Kamble, P. Mishra, Hassan A. Al Dabbas, H. Panda, Johnathan Bruce Fernandez
{"title":"Retraction: Abrasive Wear Performance of Aluminium Modified Epoxy-Glass Fiber Composites","authors":"Vikram G. Kamble, P. Mishra, Hassan A. Al Dabbas, H. Panda, Johnathan Bruce Fernandez","doi":"10.1142/s2251237321930011","DOIUrl":null,"url":null,"abstract":"For a long time, Aluminum filled epoxies molds have been used in rapid tooling process. These molds are very economical when applied in manufacturing of low volume of plastic parts. To improve the thermal conductivity of the material, the metallic filler material is added to it and the glass fiber improves the wear resistance of the material. These two important parameters establish the life of composites. The present work reports on abrasive wear behavior of Aluminum modified epoxy and glass fiber composite with 5 wt.% and 10 wt.% of aluminum particles. Through pin on disc wear testing machine, we studied the wear behaviors of composites, and all these samples were fabricated by using hand layup process. Epoxy resin was used as matrix material which was reinforced with Glass fiber and Aluminum as filler. The composite with 5 wt.% and 10 wt.% of Al was cast with dimensions 100 × 100 × 6 mm. The specimens were machined to a size of 6 × 6 × 4 mm for abrasive testing. Abrasive tests were carried out for different grit paper sizes, i.e., 150, 320, 600 at different sliding distance, i.e., 20, 40, 60 m at different loads of 5, 10 and 15 N and at constant speed. The weight loss due to wear was calculated along with coefficient of friction. Hardness was found using Rockwell hardness machine. The SEM morphology of the worn out surface wear was analyzed to understand the wear mechanism. Results showed that the addition of Aluminum particles was beneficial for low abrasive conditions.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular and Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2251237321930011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

For a long time, Aluminum filled epoxies molds have been used in rapid tooling process. These molds are very economical when applied in manufacturing of low volume of plastic parts. To improve the thermal conductivity of the material, the metallic filler material is added to it and the glass fiber improves the wear resistance of the material. These two important parameters establish the life of composites. The present work reports on abrasive wear behavior of Aluminum modified epoxy and glass fiber composite with 5 wt.% and 10 wt.% of aluminum particles. Through pin on disc wear testing machine, we studied the wear behaviors of composites, and all these samples were fabricated by using hand layup process. Epoxy resin was used as matrix material which was reinforced with Glass fiber and Aluminum as filler. The composite with 5 wt.% and 10 wt.% of Al was cast with dimensions 100 × 100 × 6 mm. The specimens were machined to a size of 6 × 6 × 4 mm for abrasive testing. Abrasive tests were carried out for different grit paper sizes, i.e., 150, 320, 600 at different sliding distance, i.e., 20, 40, 60 m at different loads of 5, 10 and 15 N and at constant speed. The weight loss due to wear was calculated along with coefficient of friction. Hardness was found using Rockwell hardness machine. The SEM morphology of the worn out surface wear was analyzed to understand the wear mechanism. Results showed that the addition of Aluminum particles was beneficial for low abrasive conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
收缩:铝改性环氧玻璃纤维复合材料的磨料磨损性能
长期以来,铝填充环氧树脂模具一直被用于快速模具加工。当应用于低体积塑料零件的制造时,这些模具是非常经济的。为了提高材料的导热性,将金属填充材料添加到材料中,并且玻璃纤维提高了材料的耐磨性。这两个重要参数决定了复合材料的寿命。本工作报道了含5wt.%和10wt.%铝颗粒的铝改性环氧树脂和玻璃纤维复合材料的磨料磨损行为。通过销-盘磨损试验机,研究了复合材料的磨损行为,并采用手工叠层工艺制备了这些样品。以环氧树脂为基体材料,以玻璃纤维和铝为填料进行增强。将含有5 wt.%和10 wt.%Al的复合材料铸造成尺寸为100×100×6mm。将试样机加工成6×6×4mm的尺寸进行研磨试验。对不同尺寸的砂纸,即150、320、600,在不同的滑动距离,即20、40、60m,在5、10和15N的不同载荷和恒定速度下进行研磨试验。磨损造成的重量损失与摩擦系数一起计算。硬度是用洛氏硬度计测得的。对磨损表面的SEM形貌进行了分析,以了解磨损机理。结果表明,铝颗粒的加入有利于低磨损条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular and Engineering Materials
Journal of Molecular and Engineering Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
自引率
0.00%
发文量
13
期刊最新文献
Identification of object roughness using a flexible capacitive 3D force transducer featuring an interlocking microstructure Applications of marker assisted gene pyramiding in rice crop improvement Green Synthesis of Copper Nanoparticles Using Flower Extracts: A Promising Route for Enhanced Microelectronics Packaging Characterization of RF-Sputtered ZnO Thin film Coatings on Aluminium (Al6061): Microstructure, Wettability, Cavitation, and Corrosion Analysis Molecular Docking and Ligand-Binding Analysis of Amidine Derivatives Targeting Pseudomonas Aeruginosa and Escherichia Coli Bacterial Strains: An in Silico Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1