A dynamical system as the source of augmentation in a deep learning problem

P.L. Tubaro , G.B. Mindlin
{"title":"A dynamical system as the source of augmentation in a deep learning problem","authors":"P.L. Tubaro ,&nbsp;G.B. Mindlin","doi":"10.1016/j.csfx.2019.100012","DOIUrl":null,"url":null,"abstract":"<div><p>In this work we build a convolutional neural network capable of identifying individual birds by their songs. Since the actual data available from each individual is very limited, we use a dynamical system capable of synthesizing realistic songs, to generate surrogate-training data. The different synthetic songs are the result of integrating the dynamical system with slightly varied parameters. We show that a data set built in this way allows us to train the network to successfully identify the different individuals in our study. In this way, we present a novel way to perform data augmentation using dynamical systems.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"2 ","pages":"Article 100012"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csfx.2019.100012","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054419300107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

Abstract

In this work we build a convolutional neural network capable of identifying individual birds by their songs. Since the actual data available from each individual is very limited, we use a dynamical system capable of synthesizing realistic songs, to generate surrogate-training data. The different synthetic songs are the result of integrating the dynamical system with slightly varied parameters. We show that a data set built in this way allows us to train the network to successfully identify the different individuals in our study. In this way, we present a novel way to perform data augmentation using dynamical systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个动态系统作为深度学习问题的增强源
在这项工作中,我们建立了一个卷积神经网络,能够通过它们的歌声来识别单个鸟类。由于每个人的实际数据非常有限,我们使用一个能够合成现实歌曲的动态系统来生成替代训练数据。不同的合成歌曲是动力系统与微小参数变化相结合的结果。我们表明,以这种方式构建的数据集使我们能够训练网络成功地识别我们研究中的不同个体。通过这种方式,我们提出了一种利用动态系统进行数据增强的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
期刊最新文献
Editorial Board Editorial Board A novel fitted mesh scheme involving Caputo–Fabrizio approach for singularly perturbed fractional-order differential equations with large negative shift Hopf and Turing bifurcations analysis for the modified Lengyel–Epstein system The boundary of Rauzy fractal and discrete tilings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1