Mohammed Al-Osta, Muhammad Irfan Khan, Ashraf A. Bahraq, Shi-Yu Xu
{"title":"Application of ultra-high performance fiber reinforced concrete for retrofitting the damaged exterior reinforced concrete beam-column joints","authors":"Mohammed Al-Osta, Muhammad Irfan Khan, Ashraf A. Bahraq, Shi-Yu Xu","doi":"10.12989/EAS.2020.19.5.361","DOIUrl":null,"url":null,"abstract":"In the present research work, the effectiveness and the efficiency of a retrofitting approach using a layer of ultra-high performance fiber reinforced concrete (UHPFRC) jacket for damaged substandard exterior beam-column joints (BCJs) is experimentally investigated. The main objective of this study is to rehabilitate the already damaged BCJs to meet the serviceability requirements without compromising safety. According to the proposed strengthening technique, a chipped surface, lightly brushed with a dry condition was selected for making a successful bond between normal concrete substrate surface (NCSS) and UHPFRC. Then a fresh UHPFRC jacket with a thickness of 30 mm was cast around the damaged specimens. The entire test matrix was comprised of three 1/3 scale damaged exterior BCJs with a different column axial load (CAL). These specimens were repaired with UHPFRC and retested under monotonic loading. Based on the experimental results, repaired specimens showed an excellent performance in terms of their load-displacement response, maximum strength, displacement ductility, initial stiffness, secant stiffness and energy dissipation capacity when compared with the corresponding values registered when these specimens were tested in their virgin state. This rehabilitative intervention not only restored the strength, stiffness, ductility and energy dissipation capacity of severely damaged specimens but also improved their performance.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/EAS.2020.19.5.361","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
In the present research work, the effectiveness and the efficiency of a retrofitting approach using a layer of ultra-high performance fiber reinforced concrete (UHPFRC) jacket for damaged substandard exterior beam-column joints (BCJs) is experimentally investigated. The main objective of this study is to rehabilitate the already damaged BCJs to meet the serviceability requirements without compromising safety. According to the proposed strengthening technique, a chipped surface, lightly brushed with a dry condition was selected for making a successful bond between normal concrete substrate surface (NCSS) and UHPFRC. Then a fresh UHPFRC jacket with a thickness of 30 mm was cast around the damaged specimens. The entire test matrix was comprised of three 1/3 scale damaged exterior BCJs with a different column axial load (CAL). These specimens were repaired with UHPFRC and retested under monotonic loading. Based on the experimental results, repaired specimens showed an excellent performance in terms of their load-displacement response, maximum strength, displacement ductility, initial stiffness, secant stiffness and energy dissipation capacity when compared with the corresponding values registered when these specimens were tested in their virgin state. This rehabilitative intervention not only restored the strength, stiffness, ductility and energy dissipation capacity of severely damaged specimens but also improved their performance.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.