Genetic modifiers of synucleinopathies-lessons from experimental models.

Oxford open neuroscience Pub Date : 2023-03-09 eCollection Date: 2023-01-01 DOI:10.1093/oons/kvad001
Rachel Min Qi Lee, Tong-Wey Koh
{"title":"Genetic modifiers of synucleinopathies-lessons from experimental models.","authors":"Rachel Min Qi Lee, Tong-Wey Koh","doi":"10.1093/oons/kvad001","DOIUrl":null,"url":null,"abstract":"<p><p>α-Synuclein is a pleiotropic protein underlying a group of progressive neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies. Together, these are known as synucleinopathies. Like all neurological diseases, understanding of disease mechanisms is hampered by the lack of access to biopsy tissues, precluding a real-time view of disease progression in the human body. This has driven researchers to devise various experimental models ranging from yeast to flies to human brain organoids, aiming to recapitulate aspects of synucleinopathies. Studies of these models have uncovered numerous genetic modifiers of α-synuclein, most of which are evolutionarily conserved. This review discusses what we have learned about disease mechanisms from these modifiers, and ways in which the study of modifiers have supported ongoing efforts to engineer disease-modifying interventions for synucleinopathies.</p>","PeriodicalId":74386,"journal":{"name":"Oxford open neuroscience","volume":" ","pages":"kvad001"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913850/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford open neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oons/kvad001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

α-Synuclein is a pleiotropic protein underlying a group of progressive neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies. Together, these are known as synucleinopathies. Like all neurological diseases, understanding of disease mechanisms is hampered by the lack of access to biopsy tissues, precluding a real-time view of disease progression in the human body. This has driven researchers to devise various experimental models ranging from yeast to flies to human brain organoids, aiming to recapitulate aspects of synucleinopathies. Studies of these models have uncovered numerous genetic modifiers of α-synuclein, most of which are evolutionarily conserved. This review discusses what we have learned about disease mechanisms from these modifiers, and ways in which the study of modifiers have supported ongoing efforts to engineer disease-modifying interventions for synucleinopathies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
同核病的遗传修饰因子——实验模型的经验教训
α-突触核蛋白是一种多效性蛋白,是一组进行性神经退行性疾病的基础,包括帕金森病和路易体痴呆。这些统称为突触核蛋白病。与所有神经系统疾病一样,由于无法获得活检组织,对疾病机制的理解受到阻碍,从而无法实时观察人体疾病进展。这促使研究人员设计了从酵母到苍蝇再到人脑类器官的各种实验模型,旨在概括突触核蛋白病的各个方面。对这些模型的研究发现了许多α-突触核蛋白的遗传修饰因子,其中大多数在进化上是保守的。这篇综述讨论了我们从这些修饰语中了解到的疾病机制,以及修饰语的研究如何支持为突触核蛋白病设计疾病修饰干预措施的持续努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine learning-based prediction of one-year mortality in ischemic stroke patients. Astrocytic GPCR signaling in the anterior cingulate cortex modulates decision making in rats. Modulation of marble-burying behavior in adult versus adolescent C57BL/6J mice of both sexes by ethologically relevant chemosensory stimuli Correction to: Retina regeneration: lessons from vertebrates Altered neuroepithelial morphogenesis and migration defects in iPSC-derived cerebral organoids and 2D neural stem cells in familial bipolar disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1