{"title":"Building footprint extraction from very high-resolution satellite images using deep learning","authors":"Prakash Ps, B. Aithal","doi":"10.1080/14498596.2022.2037473","DOIUrl":null,"url":null,"abstract":"ABSTRACT Building footprint datasets are valuable for a variety of uses in urban settings. For a number of urban applications, polygonal building outlines with regularised bounds are required and are extremely challenging to prepare. We propose a deep learning strategy based on convolutional neural networks for retrieving building footprints. The model was trained using images from a variety of places across the metropolis, highlighting differences in land use patterns and the built environment. The evaluation measures indicate how the accuracy characteristics of distinct built-up settings differ. The results of the model are equivalent to cutting-edge building extraction methods.","PeriodicalId":50045,"journal":{"name":"Journal of Spatial Science","volume":"68 1","pages":"487 - 503"},"PeriodicalIF":1.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spatial Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/14498596.2022.2037473","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 4
Abstract
ABSTRACT Building footprint datasets are valuable for a variety of uses in urban settings. For a number of urban applications, polygonal building outlines with regularised bounds are required and are extremely challenging to prepare. We propose a deep learning strategy based on convolutional neural networks for retrieving building footprints. The model was trained using images from a variety of places across the metropolis, highlighting differences in land use patterns and the built environment. The evaluation measures indicate how the accuracy characteristics of distinct built-up settings differ. The results of the model are equivalent to cutting-edge building extraction methods.
期刊介绍:
The Journal of Spatial Science publishes papers broadly across the spatial sciences including such areas as cartography, geodesy, geographic information science, hydrography, digital image analysis and photogrammetry, remote sensing, surveying and related areas. Two types of papers are published by he journal: Research Papers and Professional Papers.
Research Papers (including reviews) are peer-reviewed and must meet a minimum standard of making a contribution to the knowledge base of an area of the spatial sciences. This can be achieved through the empirical or theoretical contribution to knowledge that produces significant new outcomes.
It is anticipated that Professional Papers will be written by industry practitioners. Professional Papers describe innovative aspects of professional practise and applications that advance the development of the spatial industry.