Tensile, Fatigue Properties and Their Anisotropies of Al-Mg Alloy Fabricated by Wire-Arc Additive Manufacturing.

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-06-18 eCollection Date: 2024-06-01 DOI:10.1089/3dp.2022.0348
Zixiang Zhou, Jiqiang Chen, Jieke Ren, Jiale Miao, Ting Xing, Shibiao Zhong, Renguo Guan
{"title":"Tensile, Fatigue Properties and Their Anisotropies of Al-Mg Alloy Fabricated by Wire-Arc Additive Manufacturing.","authors":"Zixiang Zhou, Jiqiang Chen, Jieke Ren, Jiale Miao, Ting Xing, Shibiao Zhong, Renguo Guan","doi":"10.1089/3dp.2022.0348","DOIUrl":null,"url":null,"abstract":"<p><p>The microstructure, mechanical properties (tensile, fatigue, etc.) and the anisotropies of the Al-Mg alloy fabricated by wire arc additive manufacturing are studied in this work. The results show that the microstructure of the deposited alloy is composed of coarse columnar grains in the inner-layer region and fine equiaxed grains in the interlayer region. The tensile and fatigue properties exhibit strong anisotropies. The ultimate tensile strength (258 MPa), yield strength (140 MPa), elongation (21.3%), and fatigue life (2.56 × 10<sup>5</sup>) of the sample along travel direction (0° direction) are the best, whereas those of the sample along the deposited direction (90° direction) are the lowest and those of the sample along 45° direction are the medium. It is found that the lowest strength and elongation of the sample in the deposited direction can be attributed to the large weak bonding areas between the deposition layers, whereas the lowest fatigue property is associated with the fatigue crack propagation along the grain boundaries of the columnar grains.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"e1324-e1333"},"PeriodicalIF":4.7000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442355/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The microstructure, mechanical properties (tensile, fatigue, etc.) and the anisotropies of the Al-Mg alloy fabricated by wire arc additive manufacturing are studied in this work. The results show that the microstructure of the deposited alloy is composed of coarse columnar grains in the inner-layer region and fine equiaxed grains in the interlayer region. The tensile and fatigue properties exhibit strong anisotropies. The ultimate tensile strength (258 MPa), yield strength (140 MPa), elongation (21.3%), and fatigue life (2.56 × 105) of the sample along travel direction (0° direction) are the best, whereas those of the sample along the deposited direction (90° direction) are the lowest and those of the sample along 45° direction are the medium. It is found that the lowest strength and elongation of the sample in the deposited direction can be attributed to the large weak bonding areas between the deposition layers, whereas the lowest fatigue property is associated with the fatigue crack propagation along the grain boundaries of the columnar grains.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线弧增材Al-Mg合金的拉伸、疲劳性能及其各向异性
本文研究了线弧快速成型技术制造的铝镁合金的微观结构、机械性能(拉伸、疲劳等)和各向异性。结果表明,沉积合金的微观结构由内层区域的粗柱状晶粒和层间区域的细等轴晶粒组成。拉伸和疲劳性能表现出强烈的各向异性。沿行进方向(0° 方向)试样的极限拉伸强度(258 兆帕)、屈服强度(140 兆帕)、伸长率(21.3%)和疲劳寿命(2.56 × 105)最好,而沿沉积方向(90° 方向)试样的极限拉伸强度、屈服强度和伸长率最低,沿 45°方向试样的极限拉伸强度、屈服强度和伸长率中等。研究发现,沉积方向试样的强度和伸长率最低可能是由于沉积层之间存在较大的弱结合区域,而疲劳性能最低则与疲劳裂纹沿柱状晶粒的晶界扩展有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
1,2,4-Triazole-Based Excited-State Intramolecular Proton Transfer-Driven "Turn-On" Chemosensor for Selective Cyanide Detection with Test Strip Utility and Molecular Keypad Lock: An Experimental and Computational Exploration. Smart Eutectic Gallium-Indium: "All-in-One" Nanoplatform for Computed Tomography Imaging-Guided Near Infrared-II Photothermal Therapy. Therapeutic Hydrogel Microneedle Patch for Burn Wound Field Care. Nanoliposomal Co-Delivery of AR-PROTAC and NFKBIZ siRNA for Synergistic Therapy of Androgenetic Alopecia. Self-Integrating Multifunctional Amyloidogenic Protein-Fenugreek Composite Hydrogel Patch and Ointment for Accelerated Deep Muscle Wound Healing in Rabbit Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1