{"title":"Modified t-Distribution Stochastic Neighbor Embedding Using Augmented Kernel Mahalanobis-Distance for Dynamic Multimode Chemical Process Monitoring","authors":"Haoyu Gu, Li Wang","doi":"10.1155/2022/8460463","DOIUrl":null,"url":null,"abstract":"The traditional data-driven process monitoring methods may not be applicable for the system which has dynamic and multimode characteristics. In this paper, a novel scheme named modified t-distribution stochastic neighbor embedding using augmented Mahalanobis-distance for dynamic multimode chemical process monitoring (AKMD-t-SNE) is proposed to realize dynamic multimodal process monitoring. First, the augmented matrix strategy is utilized to ensure the sample contains the autocorrelation of the process. Moreover, AKMD-t-SNE method eliminates the scale and spatial distribution differences among multiple modes by calculating the kernel Mahalanobis distance between the samples to establish the global model. The features extracted via the proposed method are obviously non-Gaussian, and there will be a deviation in the construction of traditional statistics. Then, the support vector data description (SVDD) method is used to construct statistics to deal with this problem. In addition, a hybrid correlation coefficient method (HCC) is proposed to achieve fault isolation and improve the accuracy of isolation results. The advantages of the proposed scheme are illustrated by a numerical case and the Multimode Tennessee Eastman Process (MTEP) benchmark.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/8460463","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The traditional data-driven process monitoring methods may not be applicable for the system which has dynamic and multimode characteristics. In this paper, a novel scheme named modified t-distribution stochastic neighbor embedding using augmented Mahalanobis-distance for dynamic multimode chemical process monitoring (AKMD-t-SNE) is proposed to realize dynamic multimodal process monitoring. First, the augmented matrix strategy is utilized to ensure the sample contains the autocorrelation of the process. Moreover, AKMD-t-SNE method eliminates the scale and spatial distribution differences among multiple modes by calculating the kernel Mahalanobis distance between the samples to establish the global model. The features extracted via the proposed method are obviously non-Gaussian, and there will be a deviation in the construction of traditional statistics. Then, the support vector data description (SVDD) method is used to construct statistics to deal with this problem. In addition, a hybrid correlation coefficient method (HCC) is proposed to achieve fault isolation and improve the accuracy of isolation results. The advantages of the proposed scheme are illustrated by a numerical case and the Multimode Tennessee Eastman Process (MTEP) benchmark.
期刊介绍:
International Journal of Chemical Engineering publishes papers on technologies for the production, processing, transportation, and use of chemicals on a large scale. Studies typically relate to processes within chemical and energy industries, especially for production of food, pharmaceuticals, fuels, and chemical feedstocks. Topics of investigation cover plant design and operation, process design and analysis, control and reaction engineering, as well as hazard mitigation and safety measures.
As well as original research, International Journal of Chemical Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.