Training set formation in machine learning problems (review)

A. Parasich, V. Parasich, I. Parasich
{"title":"Training set formation in machine learning problems (review)","authors":"A. Parasich, V. Parasich, I. Parasich","doi":"10.31799/1684-8853-2021-4-61-70","DOIUrl":null,"url":null,"abstract":"Introduction: Proper training set formation is a key factor in machine learning. In real training sets, problems and errors commonly occur, having a critical impact on the training result. Training set need to be formed in all machine learning problems; therefore, knowledge of possible difficulties will be helpful. Purpose: Overview of possible problems in the formation of a training set, in order to facilitate their detection and elimination when working with real training sets. Analyzing the impact of these problems on the results of the training.  Results: The article makes on overview of possible errors in training set formation, such as lack of data, imbalance, false patterns, sampling from a limited set of sources, change in the general population over time, and others. We discuss the influence of these errors on the result of the training, test set formation, and training algorithm quality measurement. The pseudo-labeling, data augmentation, and hard samples mining are considered the most effective ways to expand a training set. We offer practical recommendations for the formation of a training or test set. Examples from the practice of Kaggle competitions are given. For the problem of cross-dataset generalization in neural network training, we propose an algorithm called Cross-Dataset Machine, which is simple to implement and allows you to get a gain in cross-dataset generalization. Practical relevance: The materials of the article can be used as a practical guide in solving machine learning problems.","PeriodicalId":36977,"journal":{"name":"Informatsionno-Upravliaiushchie Sistemy","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatsionno-Upravliaiushchie Sistemy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31799/1684-8853-2021-4-61-70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Introduction: Proper training set formation is a key factor in machine learning. In real training sets, problems and errors commonly occur, having a critical impact on the training result. Training set need to be formed in all machine learning problems; therefore, knowledge of possible difficulties will be helpful. Purpose: Overview of possible problems in the formation of a training set, in order to facilitate their detection and elimination when working with real training sets. Analyzing the impact of these problems on the results of the training.  Results: The article makes on overview of possible errors in training set formation, such as lack of data, imbalance, false patterns, sampling from a limited set of sources, change in the general population over time, and others. We discuss the influence of these errors on the result of the training, test set formation, and training algorithm quality measurement. The pseudo-labeling, data augmentation, and hard samples mining are considered the most effective ways to expand a training set. We offer practical recommendations for the formation of a training or test set. Examples from the practice of Kaggle competitions are given. For the problem of cross-dataset generalization in neural network training, we propose an algorithm called Cross-Dataset Machine, which is simple to implement and allows you to get a gain in cross-dataset generalization. Practical relevance: The materials of the article can be used as a practical guide in solving machine learning problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习问题中的训练集形成(回顾)
引言:正确的训练集形成是机器学习的一个关键因素。在真实的训练集中,问题和错误经常发生,对训练结果有着至关重要的影响。所有机器学习问题都需要形成训练集;因此,了解可能存在的困难将有所帮助。目的:概述训练集形成过程中可能存在的问题,以便于在使用真实训练集时发现和消除这些问题。分析这些问题对培训结果的影响。结果:本文概述了训练集形成中可能存在的错误,如数据缺乏、不平衡、错误模式、有限来源的抽样、一般人群随时间的变化等。我们讨论了这些误差对训练结果、测试集形成和训练算法质量测量的影响。伪标记、数据扩充和硬样本挖掘被认为是扩展训练集的最有效方法。我们为培训或测试集的形成提供实用的建议。文中列举了卡格尔比赛的实例。针对神经网络训练中的跨数据集泛化问题,我们提出了一种称为跨数据集机器的算法,该算法实现简单,可以在跨数据集的泛化中获得增益。实际相关性:文章的材料可以作为解决机器学习问题的实践指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Informatsionno-Upravliaiushchie Sistemy
Informatsionno-Upravliaiushchie Sistemy Mathematics-Control and Optimization
CiteScore
1.40
自引率
0.00%
发文量
35
期刊最新文献
Modeling of bumping routes in the RSK algorithm and analysis of their approach to limit shapes Continuous control algorithms for conveyer belt routing based on multi-agent deep reinforcement learning Fully integrated optical sensor system with intensity interrogation Decoding of linear codes for single error bursts correction based on the determination of certain events Backend Bug Finder — a platform for effective compiler fuzzing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1