{"title":"Bin-Packing Based Offline Dynamic Bandwidth and Wavelength Allocation Algorithms for Power Efficiency in Super-PON","authors":"Sukriti Garg, A. Dixit","doi":"10.1364/OSAC.430997","DOIUrl":null,"url":null,"abstract":"Enduring the rapidly growing demand for high data rates is the main challenge for the current network providers. Super passive optical network (Super-PON), a prominent next generation Ethernet PON (NG-EPON) candidate, can suffice this exponentially increasing data rate requirements. However, to appease such requirements, it employs many transceivers and increases the power-consumption of the network. In this work, we focus on reducing the carbon footprint of Super-PON and propose power-efficient dynamic bandwidth and wavelength allocation (DBWA) algorithms, namely best fit bin-packing sleep mode aware (BF-SMA) and updated BF-SMA (UBF-SMA). The proposed algorithms use SMA for bandwidth scheduling and different bin-packing techniques for wavelength allocation. In bin-packing, the number of available wavelengths and their efficient allocation is based on the network load. For restricting the number of available wavelengths, we can switch off the non-essential transceivers at the OLT, which also helps in maximizing the wavelength utilization and increasing the power efficiency. The simulation results show that in comparison to the state-of-the-art DBWA algorithms, the proposed algorithms improve the power efficiency and reduce the average delay of a Super-PON system. Furthermore, we use Jain’s fairness index to validate the fairness of the proposed DBWA algorithms.","PeriodicalId":19750,"journal":{"name":"OSA Continuum","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OSA Continuum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/OSAC.430997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 2
Abstract
Enduring the rapidly growing demand for high data rates is the main challenge for the current network providers. Super passive optical network (Super-PON), a prominent next generation Ethernet PON (NG-EPON) candidate, can suffice this exponentially increasing data rate requirements. However, to appease such requirements, it employs many transceivers and increases the power-consumption of the network. In this work, we focus on reducing the carbon footprint of Super-PON and propose power-efficient dynamic bandwidth and wavelength allocation (DBWA) algorithms, namely best fit bin-packing sleep mode aware (BF-SMA) and updated BF-SMA (UBF-SMA). The proposed algorithms use SMA for bandwidth scheduling and different bin-packing techniques for wavelength allocation. In bin-packing, the number of available wavelengths and their efficient allocation is based on the network load. For restricting the number of available wavelengths, we can switch off the non-essential transceivers at the OLT, which also helps in maximizing the wavelength utilization and increasing the power efficiency. The simulation results show that in comparison to the state-of-the-art DBWA algorithms, the proposed algorithms improve the power efficiency and reduce the average delay of a Super-PON system. Furthermore, we use Jain’s fairness index to validate the fairness of the proposed DBWA algorithms.