Nur Azeanni Abd Ghani, Abbas Azapour, Syed Anuar Faua’ad Syed Muhammad, Nasser Mohamed Ramli, Dai-Viet N. Vo, Bawadi Abdullah
{"title":"Dry reforming of methane for syngas production over Ni–Co-supported Al2O3–MgO catalysts","authors":"Nur Azeanni Abd Ghani, Abbas Azapour, Syed Anuar Faua’ad Syed Muhammad, Nasser Mohamed Ramli, Dai-Viet N. Vo, Bawadi Abdullah","doi":"10.1007/s13203-018-0218-5","DOIUrl":null,"url":null,"abstract":"<p>This research project focuses on the development of catalysts for syngas production by synthesizing Ni–Co bimetallic catalyst using aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) and magnesium oxide (MgO) as the catalyst support. Ni/Al<sub>2</sub>O<sub>3</sub> (CAT-1), Ni–Co/Al<sub>2</sub>O<sub>3</sub> (CAT-2) and Ni–Co/Al<sub>2</sub>O<sub>3</sub>–MgO (CAT-3) nanocatalysts were synthesized by sol–gel method with citric acid as the gelling agent, and used in the dry reforming of methane (DRM). The objective of this study is to investigate the effects of Al<sub>2</sub>O<sub>3</sub> and MgO addition on the catalytic properties and the reaction performance of synthesized catalysts in the DRM reactions. The characteristics of the catalyst are studied using field emission scanning electron microscope (FESEM), Brunauer–Emmett–Teller (BET), X-ray powder diffraction (XRD), transmission electron microscopy, H<sub>2</sub>-temperature programmed reduction, CO<sub>2</sub>-temperature programmed desorption and temperature programmed oxidation analysis. The characteristics of the catalyst are dependent on the type of support, which influences the catalytic performances. FESEM analysis showed that CAT-3 has irregular shape morphology, and is well dispersed onto the catalyst support. BET results demonstrate high surface area of the synthesized catalyst due to high calcination temperature during catalysts preparation. Moreover, the formation of MgAl<sub>2</sub>O<sub>4</sub> spinel-type solution in CAT-3 is proved by XRD analysis due to the interaction between alumina lattice and magnesium metal which has high resistance to coke formation, leading to stronger metal surface interaction within the catalyst. The CO<sub>2</sub> methane dry reforming is executed in the tubular furnace reactor at 1073.15?K, 1?atm and CH<sub>4</sub>/CO<sub>2</sub> ratio of unity to investigate the effect of the mentioned catalysts. Ni–Co/Al<sub>2</sub>O<sub>3</sub>–MgO gave the highest catalyst performance compared to the other synthesized catalysts owning to the strong metal–support interaction, high stability and significant resistance to carbon deposition during the DRM reaction.</p>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"8 4","pages":"263 - 270"},"PeriodicalIF":0.1250,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-018-0218-5","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-018-0218-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
This research project focuses on the development of catalysts for syngas production by synthesizing Ni–Co bimetallic catalyst using aluminum oxide (Al2O3) and magnesium oxide (MgO) as the catalyst support. Ni/Al2O3 (CAT-1), Ni–Co/Al2O3 (CAT-2) and Ni–Co/Al2O3–MgO (CAT-3) nanocatalysts were synthesized by sol–gel method with citric acid as the gelling agent, and used in the dry reforming of methane (DRM). The objective of this study is to investigate the effects of Al2O3 and MgO addition on the catalytic properties and the reaction performance of synthesized catalysts in the DRM reactions. The characteristics of the catalyst are studied using field emission scanning electron microscope (FESEM), Brunauer–Emmett–Teller (BET), X-ray powder diffraction (XRD), transmission electron microscopy, H2-temperature programmed reduction, CO2-temperature programmed desorption and temperature programmed oxidation analysis. The characteristics of the catalyst are dependent on the type of support, which influences the catalytic performances. FESEM analysis showed that CAT-3 has irregular shape morphology, and is well dispersed onto the catalyst support. BET results demonstrate high surface area of the synthesized catalyst due to high calcination temperature during catalysts preparation. Moreover, the formation of MgAl2O4 spinel-type solution in CAT-3 is proved by XRD analysis due to the interaction between alumina lattice and magnesium metal which has high resistance to coke formation, leading to stronger metal surface interaction within the catalyst. The CO2 methane dry reforming is executed in the tubular furnace reactor at 1073.15?K, 1?atm and CH4/CO2 ratio of unity to investigate the effect of the mentioned catalysts. Ni–Co/Al2O3–MgO gave the highest catalyst performance compared to the other synthesized catalysts owning to the strong metal–support interaction, high stability and significant resistance to carbon deposition during the DRM reaction.
期刊介绍:
Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.