Statistical methods for mechanical characterization of randomly reinforced media

Mikhail Tashkinov
{"title":"Statistical methods for mechanical characterization of randomly reinforced media","authors":"Mikhail Tashkinov","doi":"10.1186/s40759-017-0032-2","DOIUrl":null,"url":null,"abstract":"<p>Advanced materials with heterogeneous microstructure attract extensive interest of researchers and engineers due to combination of unique properties and ability to create materials that are most suitable for each specific application. One of the challenging tasks is development of models of mechanical behavior for such materials since precision of the obtained numerical results highly depends on level of consideration of features of their heterogeneous microstructure. In most cases, numerical modeling of composite structures is based on multiscale approaches that require special techniques for establishing connection between parameters at different scales. This work offers a review of instruments of the statistics and the probability theory that are used for mechanical characterization of heterogeneous media with random positions of reinforcements. Such statistical descriptors are involved in assessment of correlations between the microstructural components and are parts of mechanical theories which require formalization of the information about microstructural morphology. Particularly, the paper addresses application of the instruments of statistics for geometry description and media reconstruction as well as their utilization in homogenization methods and local stochastic stress and strain field analysis.</p>","PeriodicalId":696,"journal":{"name":"Mechanics of Advanced Materials and Modern Processes","volume":"3 1","pages":""},"PeriodicalIF":4.0300,"publicationDate":"2017-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40759-017-0032-2","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Advanced Materials and Modern Processes","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s40759-017-0032-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Advanced materials with heterogeneous microstructure attract extensive interest of researchers and engineers due to combination of unique properties and ability to create materials that are most suitable for each specific application. One of the challenging tasks is development of models of mechanical behavior for such materials since precision of the obtained numerical results highly depends on level of consideration of features of their heterogeneous microstructure. In most cases, numerical modeling of composite structures is based on multiscale approaches that require special techniques for establishing connection between parameters at different scales. This work offers a review of instruments of the statistics and the probability theory that are used for mechanical characterization of heterogeneous media with random positions of reinforcements. Such statistical descriptors are involved in assessment of correlations between the microstructural components and are parts of mechanical theories which require formalization of the information about microstructural morphology. Particularly, the paper addresses application of the instruments of statistics for geometry description and media reconstruction as well as their utilization in homogenization methods and local stochastic stress and strain field analysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机增强介质力学特性的统计方法
具有异质微观结构的先进材料由于其独特的性能和创造最适合每种特定应用的材料的能力,引起了研究人员和工程师的广泛兴趣。其中一项具有挑战性的任务是开发此类材料的力学行为模型,因为所获得的数值结果的精度高度依赖于对其非均质微观结构特征的考虑程度。在大多数情况下,复合材料结构的数值模拟是基于多尺度方法,需要特殊的技术来建立不同尺度参数之间的联系。这项工作提供了一个回顾的统计和概率论的工具,用于力学表征异质介质与随机位置的加强。这些统计描述符涉及到评估微观结构成分之间的相关性,并且是机械理论的一部分,需要对微观结构形态的信息进行形式化。特别地,本文讨论了统计工具在几何描述和介质重建中的应用,以及它们在均匀化方法和局部随机应力应变场分析中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of nose radius and machining parameters on surface roughness, tool wear and tool life during turning of AA7075/SiC composites for green manufacturing Mathematical modeling of the electron-beam wire deposition additive manufacturing by the smoothed particle hydrodynamics method Numerical 3D simulation of wire deposition process to predict distortion of parts Nickel nanoparticles inside carbon nanostructures: atomistic simulation Finite element simulation of the braiding process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1