Parametric test for non-normally distributed continuous data: For and against

Electronic Physician Pub Date : 2019-02-25 DOI:10.19082/7468
Umesh Wadgave, M. Khairnar
{"title":"Parametric test for non-normally distributed continuous data: For and against","authors":"Umesh Wadgave, M. Khairnar","doi":"10.19082/7468","DOIUrl":null,"url":null,"abstract":"Choosing between parametric and non-parametric statistical tests for analysis of non-normally distributed continuous data is a long-standing controversy. Conventionally, it is recommended to use non-parametric tests but few others suggest using the parametric test. This article evaluates the simulation studies comparing the parametric tests with non-parametric tests in analysing the non-normally distributed continuous data. Nonparametric tests are recommended only when data is highly skewed and log transformation technique cannot change it to normal distribution. However, in most other situations parametric tests are more powerful in analysing non-normally distributed continuous data.","PeriodicalId":11603,"journal":{"name":"Electronic Physician","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Physician","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19082/7468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Choosing between parametric and non-parametric statistical tests for analysis of non-normally distributed continuous data is a long-standing controversy. Conventionally, it is recommended to use non-parametric tests but few others suggest using the parametric test. This article evaluates the simulation studies comparing the parametric tests with non-parametric tests in analysing the non-normally distributed continuous data. Nonparametric tests are recommended only when data is highly skewed and log transformation technique cannot change it to normal distribution. However, in most other situations parametric tests are more powerful in analysing non-normally distributed continuous data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非正态分布连续数据的参数检验:正反
在分析非正态分布连续数据的参数和非参数统计检验之间进行选择是一个长期存在的争议。按照惯例,建议使用非参数测试,但很少有其他人建议使用参数测试。本文评价了在分析非正态分布连续数据时比较参数检验和非参数检验的模拟研究。只有当数据高度偏斜并且对数变换技术不能将其改变为正态分布时,才建议进行非参数测试。然而,在大多数其他情况下,参数测试在分析非正态分布连续数据方面更强大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
10 weeks
期刊最新文献
The Effect of an Educational Leaflet on Parents' Knowledge, Performance, and Self-Assessment Scores Regarding Oral Health Elements, with a Special Focus on Fluoride A Case of Posterior Scleritis with Negative Rheumatoid Factor and Positive Anti-Cyclic Citrullinated Peptide Antibody Status: Case Report Health risks from desalinated seawater used for human consumption: The case of Honaine Plant (Northwest Algeria) Analyzing the Concepts of “Good Death” from the Perspective of Nursing: A systematic review and concept analysis E-Health Literacy and Factors Affecting it in Patients Admitted to a University Hospital in Iran
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1