S. Sánchez-Carrillo, J. Alcocer, Mariana Vargas-Sánchez, Ismael Soria-Reinoso, Erika M. Rivera-Herrera, Daniela Cortés-Guzmán, Daniel Cuevas-Lara, Andrea P. Guzmán-Arias, M. Merino-Ibarra, L. Oseguera
{"title":"Greenhouse gas emissions from Mexican inland waters: first estimation and uncertainty using an upscaling approach","authors":"S. Sánchez-Carrillo, J. Alcocer, Mariana Vargas-Sánchez, Ismael Soria-Reinoso, Erika M. Rivera-Herrera, Daniela Cortés-Guzmán, Daniel Cuevas-Lara, Andrea P. Guzmán-Arias, M. Merino-Ibarra, L. Oseguera","doi":"10.1080/20442041.2021.2009310","DOIUrl":null,"url":null,"abstract":"ABSTRACT The traditional upscaling approach to greenhouse gas (GHG) emission estimates of inland waters is imprecise, but more precise methods based on environmental drivers are a longstanding challenge. Mexico lacks GHG emission estimates for its inland waters, and only sparse but scientifically validated information is available. This study provides the first GHG emission estimates from Mexican inland waters using 4275 GHG flux measurements from 26 distinctive waterbodies and one local and another global surface area dataset (INEGI and HydroLAKES). GHG emission factors were calculated and subsequently upscaled to estimate total national GHG emissions from the inland waters and compare to other emission measures based on mean global emission factors or size-productivity weighted (SPW) models. Mean (standard error) annual fluxes from all inland waters were 2.2 (5.3) kg CO2 m−2 yr−1, 0.6 (1.14) kg CH4 m−2 yr−1, and 1.0 × 10−3 (6.0 × 10−4) kg N2O m−2 yr−1. Estimates for natural waterbodies are annual average release rates between 74 (87) and 139 (163.23) Tg CO2eq while artificial waterbodies reach between 32 (2) and 21 (21) Tg CO2eq according to INEGI and HydroLAKES datasets, respectively. Considerable uncertainty was determined in the calculated mean emission factor, mostly for anthropogenic emissions. Waterbody area and chlorophyll a concentration were used as proxies to model CO2 and CH4 fluxes through regression analysis. According to SPW and IPCC models, computed mean annual CH4 emission factors were close to our estimates and exhibited a strong influence from eutrophication. In a likely scenario of increased eutrophication in Mexico, an increase in total net emissions from inland waters could be expected.","PeriodicalId":49061,"journal":{"name":"Inland Waters","volume":"12 1","pages":"294 - 310"},"PeriodicalIF":2.7000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inland Waters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/20442041.2021.2009310","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRACT The traditional upscaling approach to greenhouse gas (GHG) emission estimates of inland waters is imprecise, but more precise methods based on environmental drivers are a longstanding challenge. Mexico lacks GHG emission estimates for its inland waters, and only sparse but scientifically validated information is available. This study provides the first GHG emission estimates from Mexican inland waters using 4275 GHG flux measurements from 26 distinctive waterbodies and one local and another global surface area dataset (INEGI and HydroLAKES). GHG emission factors were calculated and subsequently upscaled to estimate total national GHG emissions from the inland waters and compare to other emission measures based on mean global emission factors or size-productivity weighted (SPW) models. Mean (standard error) annual fluxes from all inland waters were 2.2 (5.3) kg CO2 m−2 yr−1, 0.6 (1.14) kg CH4 m−2 yr−1, and 1.0 × 10−3 (6.0 × 10−4) kg N2O m−2 yr−1. Estimates for natural waterbodies are annual average release rates between 74 (87) and 139 (163.23) Tg CO2eq while artificial waterbodies reach between 32 (2) and 21 (21) Tg CO2eq according to INEGI and HydroLAKES datasets, respectively. Considerable uncertainty was determined in the calculated mean emission factor, mostly for anthropogenic emissions. Waterbody area and chlorophyll a concentration were used as proxies to model CO2 and CH4 fluxes through regression analysis. According to SPW and IPCC models, computed mean annual CH4 emission factors were close to our estimates and exhibited a strong influence from eutrophication. In a likely scenario of increased eutrophication in Mexico, an increase in total net emissions from inland waters could be expected.
期刊介绍:
Inland Waters is the peer-reviewed, scholarly outlet for original papers that advance science within the framework of the International Society of Limnology (SIL). The journal promotes understanding of inland aquatic ecosystems and their management. Subject matter parallels the content of SIL Congresses, and submissions based on presentations are encouraged.
All aspects of physical, chemical, and biological limnology are appropriate, as are papers on applied and regional limnology. The journal also aims to publish articles resulting from plenary lectures presented at SIL Congresses and occasional synthesis articles, as well as issues dedicated to a particular theme, specific water body, or aquatic ecosystem in a geographical area. Publication in the journal is not restricted to SIL members.