Yaser Alaiwi, A. Abed, G. Smaisim, Mohamed Aly Saad Aly, Salema K. Hadrawi, Reza Morovati
{"title":"Simulation and investigation of bioethanol production considering energetic and economic considerations","authors":"Yaser Alaiwi, A. Abed, G. Smaisim, Mohamed Aly Saad Aly, Salema K. Hadrawi, Reza Morovati","doi":"10.1093/ijlct/ctad008","DOIUrl":null,"url":null,"abstract":"\n Today, the use of alternative fuels that have plant origin has attracted the attention of most countries because these fuels emit less pollution. In this research, bioethanol production has been evaluated considering solar energy sources. In the present study, the possibility of developing net-zero energy concepts in a bioethanol production plant as one of the most consumed energy industries in the field of bio-systems of the country from a technical and economic perspective was investigated. The purpose of this research is to model the bioethanol production plant with the aim of achieving zero net energy using a photovoltaic system. In addition, technical and economic analyzes have been used in different approaches for a more detailed investigation. According to the modeling done, in the Zero net energy approach, the results showed that the maximum production of electrical energy by the photovoltaic cell is 76.6 GWh/yr. For this approach, the return on investment is 10.7 years. The area required to install photovoltaic modules in this approach is very large and equal to 88,334 m2.","PeriodicalId":14118,"journal":{"name":"International Journal of Low-carbon Technologies","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Low-carbon Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/ijlct/ctad008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
Today, the use of alternative fuels that have plant origin has attracted the attention of most countries because these fuels emit less pollution. In this research, bioethanol production has been evaluated considering solar energy sources. In the present study, the possibility of developing net-zero energy concepts in a bioethanol production plant as one of the most consumed energy industries in the field of bio-systems of the country from a technical and economic perspective was investigated. The purpose of this research is to model the bioethanol production plant with the aim of achieving zero net energy using a photovoltaic system. In addition, technical and economic analyzes have been used in different approaches for a more detailed investigation. According to the modeling done, in the Zero net energy approach, the results showed that the maximum production of electrical energy by the photovoltaic cell is 76.6 GWh/yr. For this approach, the return on investment is 10.7 years. The area required to install photovoltaic modules in this approach is very large and equal to 88,334 m2.
期刊介绍:
The International Journal of Low-Carbon Technologies is a quarterly publication concerned with the challenge of climate change and its effects on the built environment and sustainability. The Journal publishes original, quality research papers on issues of climate change, sustainable development and the built environment related to architecture, building services engineering, civil engineering, building engineering, urban design and other disciplines. It features in-depth articles, technical notes, review papers, book reviews and special issues devoted to international conferences. The journal encourages submissions related to interdisciplinary research in the built environment. The journal is available in paper and electronic formats. All articles are peer-reviewed by leading experts in the field.