Trajectory optimization for UAV-enabled relaying with reinforcement learning

IF 7.5 2区 计算机科学 Q1 TELECOMMUNICATIONS Digital Communications and Networks Pub Date : 2025-02-01 DOI:10.1016/j.dcan.2023.07.006
Chiya Zhang , Xinjie Li , Chunlong He , Xingquan Li , Dongping Lin
{"title":"Trajectory optimization for UAV-enabled relaying with reinforcement learning","authors":"Chiya Zhang ,&nbsp;Xinjie Li ,&nbsp;Chunlong He ,&nbsp;Xingquan Li ,&nbsp;Dongping Lin","doi":"10.1016/j.dcan.2023.07.006","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the application of the Unmanned Aerial Vehicle (UAV)-enabled relaying system in emergency communications, where one UAV is applied as a relay to help transmit information from ground users to a Base Station (BS). We maximize the total transmitted data from the users to the BS, by optimizing the user communication scheduling and association along with the power allocation and the trajectory of the UAV. To solve this non-convex optimization problem, we propose the traditional Convex Optimization (CO) and the Reinforcement Learning (RL)-based approaches. Specifically, we apply the block coordinate descent and successive convex approximation techniques in the CO approach, while applying the soft actor-critic algorithm in the RL approach. The simulation results show that both approaches can solve the proposed optimization problem and obtain good results. Moreover, the RL approach establishes emergency communications more rapidly than the CO approach once the training process has been completed.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 1","pages":"Pages 200-209"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823001311","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the application of the Unmanned Aerial Vehicle (UAV)-enabled relaying system in emergency communications, where one UAV is applied as a relay to help transmit information from ground users to a Base Station (BS). We maximize the total transmitted data from the users to the BS, by optimizing the user communication scheduling and association along with the power allocation and the trajectory of the UAV. To solve this non-convex optimization problem, we propose the traditional Convex Optimization (CO) and the Reinforcement Learning (RL)-based approaches. Specifically, we apply the block coordinate descent and successive convex approximation techniques in the CO approach, while applying the soft actor-critic algorithm in the RL approach. The simulation results show that both approaches can solve the proposed optimization problem and obtain good results. Moreover, the RL approach establishes emergency communications more rapidly than the CO approach once the training process has been completed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于强化学习的无人机中继轨迹优化
在本文中,我们研究了无人机(UAV)中继系统在应急通信中的应用,其中一架无人机作为中继来帮助将信息从地面用户传输到基站(BS)。通过优化用户通信调度和关联,结合无人机的功率分配和飞行轨迹,实现从用户到基站的总传输数据量最大化。为了解决这个非凸优化问题,我们提出了传统的凸优化(CO)和基于强化学习(RL)的方法。具体来说,我们在CO方法中应用了块坐标下降和连续凸逼近技术,而在RL方法中应用了软actor-critic算法。仿真结果表明,两种方法均能解决所提出的优化问题,并取得了较好的效果。此外,一旦培训过程完成,后备人员培训办法比CO办法更快地建立紧急通信。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Digital Communications and Networks
Digital Communications and Networks Computer Science-Hardware and Architecture
CiteScore
12.80
自引率
5.10%
发文量
915
审稿时长
30 weeks
期刊介绍: Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus. In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field. In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.
期刊最新文献
A blockchain-based user-centric identity management toward 6G networks Editorial Board Cross-domain resources optimization for hybrid edge computing networks: Federated DRL approach Radio map estimation using a CycleGAN-based learning framework for 6G wireless communication Autonomous network management for 6G communication: A comprehensive survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1