{"title":"The role of bone marrow microenvironment on CAR-T efficacy in haematologic malignancies.","authors":"Dandan Gao, Fei Hong, Aili He","doi":"10.1111/sji.13273","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, chimeric antigen receptor-T (CAR-T) cell therapy has emerged as a novel immunotherapy method. It has shown significant therapeutic efficacy in the treatment of haematological B cell malignancies. In particular, the CAR-T therapy targeting CD19 has yielded unprecedented efficacy for acute B-lymphocytic leukaemia (B-ALL) and non-Hodgkin's lymphoma (NHL). In haematologic malignancies, tumour stem cells are more prone to stay in the regulatory bone marrow (BM) microenvironment (called niches), which provides a protective environment against immune attack. However, how the BM microenvironment affects the anti-tumour efficacy of CAR-T cells and its underlying mechanism is worthy of attention. In this review, we discuss the role of the BM microenvironment on the efficacy of CAR-T in haematological malignancies and propose corresponding strategies to enhance the anti-tumour activity of CAR-T therapy.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":" ","pages":"e13273"},"PeriodicalIF":5.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/sji.13273","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, chimeric antigen receptor-T (CAR-T) cell therapy has emerged as a novel immunotherapy method. It has shown significant therapeutic efficacy in the treatment of haematological B cell malignancies. In particular, the CAR-T therapy targeting CD19 has yielded unprecedented efficacy for acute B-lymphocytic leukaemia (B-ALL) and non-Hodgkin's lymphoma (NHL). In haematologic malignancies, tumour stem cells are more prone to stay in the regulatory bone marrow (BM) microenvironment (called niches), which provides a protective environment against immune attack. However, how the BM microenvironment affects the anti-tumour efficacy of CAR-T cells and its underlying mechanism is worthy of attention. In this review, we discuss the role of the BM microenvironment on the efficacy of CAR-T in haematological malignancies and propose corresponding strategies to enhance the anti-tumour activity of CAR-T therapy.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.