Integration of Energetic Model for Ferromagnetic Hysteresis in Finite Volume Method for Electromagnetic Field Calculation

Q3 Engineering Instrumentation Mesure Metrologie Pub Date : 2021-02-28 DOI:10.18280/I2M.200104
Ali Hammouche, M. Hamimid, A. Kansab, B. Belmadani
{"title":"Integration of Energetic Model for Ferromagnetic Hysteresis in Finite Volume Method for Electromagnetic Field Calculation","authors":"Ali Hammouche, M. Hamimid, A. Kansab, B. Belmadani","doi":"10.18280/I2M.200104","DOIUrl":null,"url":null,"abstract":"In this article, a coupled algorithm between the control volume method and the hysteresis dynamic energetic model for ferromagnetic hysteresis is presented. To illustrate the dynamic behavior of ferromagnetic materials, the quasi-static model is extended by adding two components to the applied magnetic field “Hedd”, and “Hexc”. The added fields are related to the excess losses and classical eddy losses. Thus, two new supplementary coefficients are added to the model parameters. The determination of those coefficients is attained by measuring the energy density for two distinct frequencies. This model introducing the magnetic induction as an independent variable is presented in order to be directly used in time-stepping finite volume calculations applied to the magnetic vector potential formulation. The calculated results are validated by experiences performed in an Epstein’s frame. To check the effectiveness of this model combined with the control volume method in the time domain, the obtained results are compared with experiments.","PeriodicalId":38637,"journal":{"name":"Instrumentation Mesure Metrologie","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instrumentation Mesure Metrologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/I2M.200104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

In this article, a coupled algorithm between the control volume method and the hysteresis dynamic energetic model for ferromagnetic hysteresis is presented. To illustrate the dynamic behavior of ferromagnetic materials, the quasi-static model is extended by adding two components to the applied magnetic field “Hedd”, and “Hexc”. The added fields are related to the excess losses and classical eddy losses. Thus, two new supplementary coefficients are added to the model parameters. The determination of those coefficients is attained by measuring the energy density for two distinct frequencies. This model introducing the magnetic induction as an independent variable is presented in order to be directly used in time-stepping finite volume calculations applied to the magnetic vector potential formulation. The calculated results are validated by experiences performed in an Epstein’s frame. To check the effectiveness of this model combined with the control volume method in the time domain, the obtained results are compared with experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电磁场计算中有限体积法中铁磁滞回能量模型的积分
本文提出了一种控制体积法与磁滞动力学能量模型的耦合算法。为了说明铁磁材料的动态行为,将准静态模型扩展为外加磁场“Hedd”和“Hexc”两个分量。附加场与多余损耗和经典涡流损耗有关。因此,在模型参数中增加了两个新的补充系数。这些系数的确定是通过测量两个不同频率的能量密度来实现的。该模型将磁感应强度作为自变量引入,可直接用于磁矢势公式的时步有限体积计算。通过在爱泼斯坦框架中进行的实验验证了计算结果。为了验证该模型与控制体积法在时域内的有效性,将所得结果与实验结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Instrumentation Mesure Metrologie
Instrumentation Mesure Metrologie Engineering-Engineering (miscellaneous)
CiteScore
1.70
自引率
0.00%
发文量
25
期刊最新文献
A Device for Measuring the Electrical Conductivity of Liquids Using Phase Sensitive Detection Technique Design and Evaluation of a Spider Web-Like Single-Axis Micro-Electro-Mechanical Systems Accelerometer with High Sensitivity and Fast Response Investigating Fluid Flow Regimes: A Novel Design and Implementation of Bernoulli’s Apparatus Metrological Characterization of Spring Impact Hammer Calibration Advanced Sensor-Based Cap Cooling System for Mitigating Chemotherapy-Induced Hair Loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1