Quercetin as an anticancer candidate for glioblastoma multiforme by targeting AKT1, MMP9, ABCB1, and VEGFA: An in silico study

M. H. Widyananda, S. Pratama, A. Ansori, Y. Antonius, V. D. Kharisma, Ahmad Affan Ali Murtadlo, V. Jakhmola, Maksim Rebezov, M. Khayrullin, Marina Derkho, Emdad Ullah, R. J. Susilo, S. Hayaza, A. Nugraha, Annise Proboningrat, Amaq Fadholly, M. Sibero, Rahadian Zainul
{"title":"Quercetin as an anticancer candidate for glioblastoma multiforme by targeting AKT1, MMP9, ABCB1, and VEGFA: An in silico study","authors":"M. H. Widyananda, S. Pratama, A. Ansori, Y. Antonius, V. D. Kharisma, Ahmad Affan Ali Murtadlo, V. Jakhmola, Maksim Rebezov, M. Khayrullin, Marina Derkho, Emdad Ullah, R. J. Susilo, S. Hayaza, A. Nugraha, Annise Proboningrat, Amaq Fadholly, M. Sibero, Rahadian Zainul","doi":"10.33640/2405-609x.3312","DOIUrl":null,"url":null,"abstract":"Abstract Quercetin, a natural compound present in various fruits and vegetables, shows promise as a potential inhibitor for glioblastoma multiforme (GBM) development. This study aims to examine the anti-GBM potential of Quercetin. The protein target of Quercetin is identified and analyzed using databases such as NCBI, SEA, CTD, and STRING. Protein-protein interaction (PPI) and functional annotation are carried out based on the obtained target proteins. Molecular docking and dynamics simulations are employed using AutoDock Vina and WebGro tools to analyze the interaction between Quercetin and its target proteins. The prediction of protein targets reveals that Quercetin directly targets four proteins associated with GBM. In conclusion, Quercetin demonstrates potential as an anti-GBM agent, specifically by targeting","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Karbala International Journal of Modern Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33640/2405-609x.3312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Quercetin, a natural compound present in various fruits and vegetables, shows promise as a potential inhibitor for glioblastoma multiforme (GBM) development. This study aims to examine the anti-GBM potential of Quercetin. The protein target of Quercetin is identified and analyzed using databases such as NCBI, SEA, CTD, and STRING. Protein-protein interaction (PPI) and functional annotation are carried out based on the obtained target proteins. Molecular docking and dynamics simulations are employed using AutoDock Vina and WebGro tools to analyze the interaction between Quercetin and its target proteins. The prediction of protein targets reveals that Quercetin directly targets four proteins associated with GBM. In conclusion, Quercetin demonstrates potential as an anti-GBM agent, specifically by targeting
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
槲皮素作为靶向AKT1、MMP9、ABCB1和VEGFA的多形性胶质母细胞瘤抗癌候选药物:一项计算机研究
摘要槲皮素是一种存在于各种水果和蔬菜中的天然化合物,有望成为多形性胶质母细胞瘤(GBM)发展的潜在抑制剂。本研究旨在检测槲皮素的抗GBM潜力。槲皮素的蛋白质靶标使用数据库如NCBI、SEA、CTD和STRING进行鉴定和分析。基于获得的靶蛋白进行蛋白质-蛋白质相互作用(PPI)和功能注释。使用AutoDock-Vina和WebGro工具进行分子对接和动力学模拟,以分析槲皮素与其靶蛋白之间的相互作用。蛋白质靶点的预测显示槲皮素直接靶向与GBM相关的四种蛋白质。总之,槲皮素显示出作为一种抗GBM药物的潜力,特别是通过靶向
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Karbala International Journal of Modern Science
Karbala International Journal of Modern Science Multidisciplinary-Multidisciplinary
CiteScore
2.50
自引率
0.00%
发文量
54
期刊最新文献
Freedom as the Physical Notion. Mechanics of a Material Point Enhanced optoelectronics performance of hybrid self power photodetectors GO: TiO2- AD / n-Si heterojunctions The Potential Influence of Immune Modulatory Molecules (TGF-βIII and CTLA-4) in Pathogenicity of PCOS Heterogeneous Resources in Infrastructures of the Edge Network Paradigm: A Comprehensive Review Classification and removal of hazy images based on a transmission fusion strategy using the Alexnet network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1