Numerical study of the splashing wave induced by a seaplane using mesh-based and particle-based methods

IF 3.2 3区 工程技术 Q2 MECHANICS Theoretical and Applied Mechanics Letters Pub Date : 2023-09-01 DOI:10.1016/j.taml.2023.100463
Yang Xu , Peng-Nan Sun , Xiao-Ting Huang , Salvatore Marrone , Lei-Ming Geng
{"title":"Numerical study of the splashing wave induced by a seaplane using mesh-based and particle-based methods","authors":"Yang Xu ,&nbsp;Peng-Nan Sun ,&nbsp;Xiao-Ting Huang ,&nbsp;Salvatore Marrone ,&nbsp;Lei-Ming Geng","doi":"10.1016/j.taml.2023.100463","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, forest fires and maritime accidents have occurred frequently, which have had a bad impact on human production and life. Thus, the development of seaplanes is an increasingly urgent demand. It is important to study the taxiing process of seaplanes for the development of seaplanes, which is a strong nonlinear fluid-structure interaction problem. In this paper, the Smoothed Particle Hydrodynamics (SPH) method based on the Lagrangian framework is utilized to simulate the taxiing process of seaplanes, and the SPH results are compared with those of the Finite Volume Method (FVM) based on the Eulerian method. The results show that the SPH method can not only give the same accuracy as the FVM but also have a strong ability to capture the splashing waves in the taxiing process, which is quite meaningful for the subsequent study of the effect of a splash on other parts of the seaplane.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209503492300034X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, forest fires and maritime accidents have occurred frequently, which have had a bad impact on human production and life. Thus, the development of seaplanes is an increasingly urgent demand. It is important to study the taxiing process of seaplanes for the development of seaplanes, which is a strong nonlinear fluid-structure interaction problem. In this paper, the Smoothed Particle Hydrodynamics (SPH) method based on the Lagrangian framework is utilized to simulate the taxiing process of seaplanes, and the SPH results are compared with those of the Finite Volume Method (FVM) based on the Eulerian method. The results show that the SPH method can not only give the same accuracy as the FVM but also have a strong ability to capture the splashing waves in the taxiing process, which is quite meaningful for the subsequent study of the effect of a splash on other parts of the seaplane.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于网格和粒子的水上飞机飞溅波数值研究
近年来,森林火灾和海上事故频发,给人类的生产生活造成了严重影响。因此,水上飞机的发展是一个日益迫切的需求。水上飞机滑行过程是一个强非线性流固耦合问题,对水上飞机的发展具有重要意义。本文采用基于拉格朗日框架的光滑粒子流体力学(SPH)方法对水上飞机的滑行过程进行了模拟,并与基于欧拉方法的有限体积法(FVM)进行了比较。结果表明,SPH方法不仅可以获得与FVM相同的精度,而且具有较强的捕捉滑行过程中飞溅波的能力,这对后续研究飞溅波对水上飞机其他部分的影响具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
2.90%
发文量
545
审稿时长
12 weeks
期刊介绍: An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).
期刊最新文献
A New Cyclic Cohesive Zone Model for Fatigue Damage Analysis of Welded Vessel Numerical Study of Flow and Thermal Characteristics of Pulsed Impinging Jet on a Dimpled Surface Constrained re-calibration of two-equation Reynolds-averaged Navier–Stokes models Magnetically-actuated Intracorporeal Biopsy Robot Based on Kresling Origami A New Strain-Based Pentagonal Membrane Finite Element for Solid Mechanics Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1