Investigation of Rotating Eddy Current Testing Simulation Using Simplified Model

IF 1 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Multiscale Modelling Pub Date : 2021-10-29 DOI:10.1142/s1756973721420026
Chenkai Yang, Jiuhao Ge, Baowang Hu
{"title":"Investigation of Rotating Eddy Current Testing Simulation Using Simplified Model","authors":"Chenkai Yang, Jiuhao Ge, Baowang Hu","doi":"10.1142/s1756973721420026","DOIUrl":null,"url":null,"abstract":"To reduce the time of simulation for rotating Eddy current testing (RECT) technique, a simplified model without modeling probe was proposed previously. However, the applicability of the simplified simulation model was unknown. In this paper, the applicability of the simplified model for the RECT technique was investigated. The application condition of the simplified model was provided by comparing it with the results of the traditional simulation model. The simplified model was suitable for the study of cracks shorter than 70% size of the uniform Eddy current induced by the probe in a traditional model or experiment. The experiment was conducted to validate the simplified model. Moreover, using the simplified model, the effects of crack depth, orientation, and exciting frequency were studied. The deeper the crack depth was, the greater peak value of [Formula: see text] signal was. The crack angle was linear with the phase of signal. The exciting frequency affected the amplitude and phase of the signal at the same time.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multiscale Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1756973721420026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

Abstract

To reduce the time of simulation for rotating Eddy current testing (RECT) technique, a simplified model without modeling probe was proposed previously. However, the applicability of the simplified simulation model was unknown. In this paper, the applicability of the simplified model for the RECT technique was investigated. The application condition of the simplified model was provided by comparing it with the results of the traditional simulation model. The simplified model was suitable for the study of cracks shorter than 70% size of the uniform Eddy current induced by the probe in a traditional model or experiment. The experiment was conducted to validate the simplified model. Moreover, using the simplified model, the effects of crack depth, orientation, and exciting frequency were studied. The deeper the crack depth was, the greater peak value of [Formula: see text] signal was. The crack angle was linear with the phase of signal. The exciting frequency affected the amplitude and phase of the signal at the same time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于简化模型的旋转涡流检测仿真研究
为了减少旋转涡流检测(RECT)技术的模拟时间,以前提出了一种不建模探针的简化模型。然而,简化模拟模型的适用性尚不清楚。本文研究了简化模型在RECT技术中的适用性。通过与传统仿真模型结果的比较,给出了简化模型的应用条件。简化模型适用于研究在传统模型或实验中由探针引起的均匀涡流的尺寸小于70%的裂纹。实验对简化模型进行了验证。此外,使用简化模型,研究了裂纹深度、方向和激励频率的影响。裂纹深度越深,[公式:见正文]信号的峰值越大。裂纹角度与信号相位成线性关系。激励频率同时影响信号的幅度和相位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Multiscale Modelling
Journal of Multiscale Modelling MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
9
期刊最新文献
Parameters Influencing the Fatigue Behavior of Ti6AL4V Biaxial Testing of EPDM Rubbers for Automotive Applications Using a Uniaxial Testing Machine Crystal Plasticity Analyses Around Grain Boundaries Using a Dislocation Dynamics Finite Element Model Thermal analysis of MHD hybrid nanofluid on stretching/shrinking non-parallel walls with uncertain volume fractions Thermoelastic Interaction in a Functionally Graded Medium due to Refined Three-Phase-Lag Green-Naghdi Model Under Gravitational Field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1