K. Nagasawa, Shigeru Fukumoto, H. Setoguchi, M. Ishihara, Kenjiro Hiratsuka, Kazutoshi Masuda, S. Sakaguchi
{"title":"Genetic purity of a rear-edge population of Carex podogyna Franch. et Sav. (Cyperaceae) maintained under interspecific hybridization.","authors":"K. Nagasawa, Shigeru Fukumoto, H. Setoguchi, M. Ishihara, Kenjiro Hiratsuka, Kazutoshi Masuda, S. Sakaguchi","doi":"10.1266/ggs.21-00087","DOIUrl":null,"url":null,"abstract":"Interspecific hybridization is a critical issue in conservation biology because it may drive small populations to extinction through direct or indirect processes. In this study, to develop a conservation strategy for an endangered rear-edge population of Carex podogyna in Ashiu, Kyoto, Japan, we performed a molecular genetic analysis of the wild population and an ex-situ population established from wild seeds. Microsatellite genotypic data revealed a complete loss of genetic diversity in the wild population, suggesting that it has long been prone to genetic drift due to isolation as a small population. In contrast, microsatellite analysis of 13 ex-situ individuals detected multiple alleles that are not harbored in the wild C. podogyna population. Sequence analysis revealed that these individuals are likely natural hybrids between C. podogyna and a co-occurring species, C. curvicollis, although established hybrids have never been found in the natural habitat. Based on our observation of variegated leaves in hybrid individuals, we propose that hybrids have been excluded by natural selection and/or interspecific competition caused by insufficient productivity of photosynthesis, although other genetic and ecological factors may also be influential. Overall, this study indicates that natural mechanisms selectively removing the hybrids have maintained the genetic purity of this rear-edge population of C. podogyna, and also emphasizes the importance of genetic assessment in ex-situ conservation programs.","PeriodicalId":12690,"journal":{"name":"Genes & genetic systems","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genetic systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1266/ggs.21-00087","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Interspecific hybridization is a critical issue in conservation biology because it may drive small populations to extinction through direct or indirect processes. In this study, to develop a conservation strategy for an endangered rear-edge population of Carex podogyna in Ashiu, Kyoto, Japan, we performed a molecular genetic analysis of the wild population and an ex-situ population established from wild seeds. Microsatellite genotypic data revealed a complete loss of genetic diversity in the wild population, suggesting that it has long been prone to genetic drift due to isolation as a small population. In contrast, microsatellite analysis of 13 ex-situ individuals detected multiple alleles that are not harbored in the wild C. podogyna population. Sequence analysis revealed that these individuals are likely natural hybrids between C. podogyna and a co-occurring species, C. curvicollis, although established hybrids have never been found in the natural habitat. Based on our observation of variegated leaves in hybrid individuals, we propose that hybrids have been excluded by natural selection and/or interspecific competition caused by insufficient productivity of photosynthesis, although other genetic and ecological factors may also be influential. Overall, this study indicates that natural mechanisms selectively removing the hybrids have maintained the genetic purity of this rear-edge population of C. podogyna, and also emphasizes the importance of genetic assessment in ex-situ conservation programs.