{"title":"Path Planning for Autonomous Vehicles in Unknown Dynamic Environment Based on Deep Reinforcement Learning","authors":"Hui Hu, Yuge Wang, Wenjie Tong, Jiao Zhao, Yulei Gu","doi":"10.3390/app131810056","DOIUrl":null,"url":null,"abstract":"Autonomous vehicles can reduce labor power during cargo transportation, and then improve transportation efficiency, for example, the automated guided vehicle (AGV) in the warehouse can improve the operation efficiency. To overcome the limitations of traditional path planning algorithms in unknown environments, such as reliance on high-precision maps, lack of generalization ability, and obstacle avoidance capability, this study focuses on investigating the Deep Q-Network and its derivative algorithm to enhance network and algorithm structures. A new algorithm named APF-D3QNPER is proposed, which combines the action output method of artificial potential field (APF) with the Dueling Double Deep Q Network algorithm, and experience sample rewards are considered in the experience playback portion of the traditional Deep Reinforcement Learning (DRL) algorithm, which enhances the convergence ability of the traditional DRL algorithm. A long short-term memory (LSTM) network is added to the state feature extraction network part to improve its adaptability in unknown environments and enhance its spatiotemporal sensitivity to the environment. The APF-D3QNPER algorithm is compared with mainstream deep reinforcement learning algorithms and traditional path planning algorithms using a robot operating system and the Gazebo simulation platform by conducting experiments. The results demonstrate that the APF-D3QNPER algorithm exhibits excellent generalization abilities in the simulation environment, and the convergence speed, the loss value, the path planning time, and the path planning length of the APF-D3QNPER algorithm are all less than for other algorithms in diverse scenarios.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences-Basel","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/app131810056","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Autonomous vehicles can reduce labor power during cargo transportation, and then improve transportation efficiency, for example, the automated guided vehicle (AGV) in the warehouse can improve the operation efficiency. To overcome the limitations of traditional path planning algorithms in unknown environments, such as reliance on high-precision maps, lack of generalization ability, and obstacle avoidance capability, this study focuses on investigating the Deep Q-Network and its derivative algorithm to enhance network and algorithm structures. A new algorithm named APF-D3QNPER is proposed, which combines the action output method of artificial potential field (APF) with the Dueling Double Deep Q Network algorithm, and experience sample rewards are considered in the experience playback portion of the traditional Deep Reinforcement Learning (DRL) algorithm, which enhances the convergence ability of the traditional DRL algorithm. A long short-term memory (LSTM) network is added to the state feature extraction network part to improve its adaptability in unknown environments and enhance its spatiotemporal sensitivity to the environment. The APF-D3QNPER algorithm is compared with mainstream deep reinforcement learning algorithms and traditional path planning algorithms using a robot operating system and the Gazebo simulation platform by conducting experiments. The results demonstrate that the APF-D3QNPER algorithm exhibits excellent generalization abilities in the simulation environment, and the convergence speed, the loss value, the path planning time, and the path planning length of the APF-D3QNPER algorithm are all less than for other algorithms in diverse scenarios.
期刊介绍:
Applied Sciences (ISSN 2076-3417) provides an advanced forum on all aspects of applied natural sciences. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.