H. Rodenhizer, F. Belshe, G. Celis, J. Ledman, M. Mauritz, S. Goetz, T. Sankey, E. Schuur
{"title":"Abrupt permafrost thaw accelerates carbon dioxide and methane release at a tussock tundra site","authors":"H. Rodenhizer, F. Belshe, G. Celis, J. Ledman, M. Mauritz, S. Goetz, T. Sankey, E. Schuur","doi":"10.1080/15230430.2022.2118639","DOIUrl":null,"url":null,"abstract":"ABSTRACT Abrupt thaw could cause permafrost ecosystems to release more carbon than is predicted from gradual thaw alone. However, thermokarst feature mapping is limited in scope, and observed responses of carbon fluxes to abrupt thaw are variable. We developed a thermokarst detection algorithm that identifies thermokarst features from a single elevation dataset with 71.5 percent accuracy and applied it in Healy, Alaska. Additionally, we investigated the landscape-level variation in carbon dioxide and methane fluxes by extent of abrupt thaw using eddy covariance. Seven percent of the site was classified as thermokarst. Water tracks were the most extensive form of thermokarst, although small pits were much more numerous. Abrupt thaw was positively correlated with carbon uptake during the growing season, when increases in gross primary productivity outpaced increases in ecosystem respiration in vegetation-dense water tracks. However, this was outweighed by higher carbon release in thermokarst features during the nongrowing season. Additionally, abrupt thaw was positively correlated with methane production nearly year-round. Our findings support the hypothesis that abrupt thaw of permafrost carbon will contribute to the permafrost climate feedback above and beyond that associated with gradual thaw and highlights the need to map thermokarst and incorporate abrupt thaw into Earth System Models.","PeriodicalId":8391,"journal":{"name":"Arctic, Antarctic, and Alpine Research","volume":"54 1","pages":"443 - 464"},"PeriodicalIF":1.6000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arctic, Antarctic, and Alpine Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/15230430.2022.2118639","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 4
Abstract
ABSTRACT Abrupt thaw could cause permafrost ecosystems to release more carbon than is predicted from gradual thaw alone. However, thermokarst feature mapping is limited in scope, and observed responses of carbon fluxes to abrupt thaw are variable. We developed a thermokarst detection algorithm that identifies thermokarst features from a single elevation dataset with 71.5 percent accuracy and applied it in Healy, Alaska. Additionally, we investigated the landscape-level variation in carbon dioxide and methane fluxes by extent of abrupt thaw using eddy covariance. Seven percent of the site was classified as thermokarst. Water tracks were the most extensive form of thermokarst, although small pits were much more numerous. Abrupt thaw was positively correlated with carbon uptake during the growing season, when increases in gross primary productivity outpaced increases in ecosystem respiration in vegetation-dense water tracks. However, this was outweighed by higher carbon release in thermokarst features during the nongrowing season. Additionally, abrupt thaw was positively correlated with methane production nearly year-round. Our findings support the hypothesis that abrupt thaw of permafrost carbon will contribute to the permafrost climate feedback above and beyond that associated with gradual thaw and highlights the need to map thermokarst and incorporate abrupt thaw into Earth System Models.
期刊介绍:
The mission of Arctic, Antarctic, and Alpine Research (AAAR) is to advance understanding of cold region environments by publishing original scientific research from past, present and future high-latitude and mountain regions. Rapid environmental change occurring in cold regions today highlights the global importance of this research. AAAR publishes peer-reviewed interdisciplinary papers including original research papers, short communications and review articles. Many of these papers synthesize a variety of disciplines including ecology, climatology, geomorphology, glaciology, hydrology, paleoceanography, biogeochemistry, and social science. Papers may be uni- or multidisciplinary but should have interdisciplinary appeal. Special thematic issues and proceedings are encouraged. The journal receives contributions from a diverse group of international authors from academia, government agencies, and land managers. In addition the journal publishes opinion pieces, book reviews and in memoria. AAAR is associated with the Institute of Arctic and Alpine Research (INSTAAR) the oldest active research institute at the University of Colorado Boulder.