Tyrosinase Inhibitory of Silver Nanoparticles Synthesized using Morus Nigra Leaves Extract

Tunas Alam, Ricky Ardiansyah, Sharfina Maulidayanti, Deva Azvara, F. O. Purnomo, D. Annas
{"title":"Tyrosinase Inhibitory of Silver Nanoparticles Synthesized using Morus Nigra Leaves Extract","authors":"Tunas Alam, Ricky Ardiansyah, Sharfina Maulidayanti, Deva Azvara, F. O. Purnomo, D. Annas","doi":"10.14710/jksa.26.3.85-90","DOIUrl":null,"url":null,"abstract":"A novel preparation of silver nanoparticles using Morus nigra leaves extract, as opposed to the physical and chemical methods had been used in this work. Their active phytochemical compounds will reduce Ag+ and form AgNPs (Ag0). A peak spectrum at 460 nm was formed and confirmed as the Surface Plasmon Resonance (SPR). Vibration at 1643 cm-1 and 3286 cm-1 which characteristic of C=C bonds and (-OH) hydroxyl groups, respectively. An X-ray diffraction (XRD) examination of silver with good crystallinity revealed its distinctive pattern. According to the results of transmission electron microscopy (TEM), the produced AgNPs-Morus nigra leaves extract were between 10 and 20 nm in size. Using L-dihydroxyphenylalanine (L-DOPA) as the substrate, the synthesized AgNPs-Morus nigra were tested for their tyrosinase inhibitory activity, and the results are substantial when compared to kojic acid as a control. The percentages of inhibition from crude extract, AgNPs, and kojic acid at 100 µg/mL are to be found at 12.10 %, 64.80 %, and 59.84 %, respectively. Based on the results of this work, AgNPs can be produced by utilizing a green synthesis method with leaves extract, making them a promising candidate for use in medicine and cosmetics.","PeriodicalId":17811,"journal":{"name":"Jurnal Kimia Sains dan Aplikasi","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Kimia Sains dan Aplikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jksa.26.3.85-90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A novel preparation of silver nanoparticles using Morus nigra leaves extract, as opposed to the physical and chemical methods had been used in this work. Their active phytochemical compounds will reduce Ag+ and form AgNPs (Ag0). A peak spectrum at 460 nm was formed and confirmed as the Surface Plasmon Resonance (SPR). Vibration at 1643 cm-1 and 3286 cm-1 which characteristic of C=C bonds and (-OH) hydroxyl groups, respectively. An X-ray diffraction (XRD) examination of silver with good crystallinity revealed its distinctive pattern. According to the results of transmission electron microscopy (TEM), the produced AgNPs-Morus nigra leaves extract were between 10 and 20 nm in size. Using L-dihydroxyphenylalanine (L-DOPA) as the substrate, the synthesized AgNPs-Morus nigra were tested for their tyrosinase inhibitory activity, and the results are substantial when compared to kojic acid as a control. The percentages of inhibition from crude extract, AgNPs, and kojic acid at 100 µg/mL are to be found at 12.10 %, 64.80 %, and 59.84 %, respectively. Based on the results of this work, AgNPs can be produced by utilizing a green synthesis method with leaves extract, making them a promising candidate for use in medicine and cosmetics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黑桑叶提取物合成银纳米粒子对酪氨酸酶的抑制作用
本文研究了一种利用桑叶提取物制备纳米银的新方法,而不是采用物理和化学方法。它们的活性植物化学化合物会还原Ag+并形成AgNPs (Ag0)。在460 nm处形成了一个峰谱,并确认为表面等离子体共振(SPR)。在1643 cm-1和3286 cm-1处振动,分别以C=C键和(-OH)羟基为特征。对结晶度好的银进行了x射线衍射(XRD)检测,发现其独特的图案。透射电镜(TEM)结果表明,制备的agnps -桑叶提取物的粒径在10 ~ 20 nm之间。以l -二羟基苯丙氨酸(L-DOPA)为底物,对合成的agnps -桑葚酪氨酸酶抑制活性进行了测试,并与对照曲酸进行了比较。粗提物、AgNPs和100µg/mL时的曲酸的抑制率分别为12.10%、64.80%和59.84%。基于本研究的结果,AgNPs可以利用绿色合成方法与叶片提取物合成,使其在医药和化妆品中具有很好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
36
审稿时长
17 weeks
期刊最新文献
Production of Biodiesel from Candlenut Seed Oil (Aleurites Moluccana Wild) Using a NaOH/CaO/Ca Catalyst with Microwave Heating Synthesis of Molecularly Imprinted Polymers with Magnetite Cores for Ibuprofen Adsorption Impact of Fermentation on Hyptolide and Phytochemical Composition of Hyptis pectinata (L.) Poit Effects of Temperature, Molecular Weight, and Non-Solvent Variation on the Physical Properties of PVDF Membranes Prepared through Immersion Precipitation Isolation of Phenolic Acids from Land Kale (Ipomoea reptans Poir) and Antioxidant Activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1