{"title":"Covalent Organic Frameworks-based Nanocomposites for Oxygen reduction reaction","authors":"Vivek Sharma, Dipak Kumar Das, Vinod Kumar Vashistha, Ram K. Gupta, Ghulam Yasin, Anuj Kumar","doi":"10.1007/s10847-022-01140-7","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the sluggish nature of the oxygen reduction reaction (ORR), it requires electro-catalysts to speed up the kinetics of ORR at a practical level. Covalent organic frameworks (COFs)-based materials were reported to be one of the most promising electrocatalysts for ORR among the different low-cost ORR electrocatalysts. These molecular COFs-materials offer the following benefits: (i) precise control of active sites, (ii) simple understanding of structure-activity relationships, (iii) chemically adjustable and well-defined pore size architecture, and (iv) adheres to well-defined reaction pathways. Surprisingly, the importance of structure-activity correlations is well understood, and a number of strategies for improving the activity of such catalysts have been documented. The goal of this study is to simplify COFs chemistry, highlight recent comprehensive designs for ORR, and highlight some future features of COFs engineering for ORR electrocatalysis.</p></div>","PeriodicalId":638,"journal":{"name":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10847-022-01140-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1
Abstract
Due to the sluggish nature of the oxygen reduction reaction (ORR), it requires electro-catalysts to speed up the kinetics of ORR at a practical level. Covalent organic frameworks (COFs)-based materials were reported to be one of the most promising electrocatalysts for ORR among the different low-cost ORR electrocatalysts. These molecular COFs-materials offer the following benefits: (i) precise control of active sites, (ii) simple understanding of structure-activity relationships, (iii) chemically adjustable and well-defined pore size architecture, and (iv) adheres to well-defined reaction pathways. Surprisingly, the importance of structure-activity correlations is well understood, and a number of strategies for improving the activity of such catalysts have been documented. The goal of this study is to simplify COFs chemistry, highlight recent comprehensive designs for ORR, and highlight some future features of COFs engineering for ORR electrocatalysis.
期刊介绍:
The Journal of Inclusion Phenomena and Macrocyclic Chemistry is the premier interdisciplinary publication reporting on original research into all aspects of host-guest systems. Examples of specific areas of interest are: the preparation and characterization of new hosts and new host-guest systems, especially those involving macrocyclic ligands; crystallographic, spectroscopic, thermodynamic and theoretical studies; applications in chromatography and inclusion polymerization; enzyme modelling; molecular recognition and catalysis by inclusion compounds; intercalates in biological and non-biological systems, cyclodextrin complexes and their applications in the agriculture, flavoring, food and pharmaceutical industries; synthesis, characterization and applications of zeolites.
The journal publishes primarily reports of original research and preliminary communications, provided the latter represent a significant advance in the understanding of inclusion science. Critical reviews dealing with recent advances in the field are a periodic feature of the journal.