Biogas Production from Co-Digestion of Grass with Food Waste

Hamidatu S. Darimani, D. Pant
{"title":"Biogas Production from Co-Digestion of Grass with Food Waste","authors":"Hamidatu S. Darimani, D. Pant","doi":"10.4236/jacen.2020.91003","DOIUrl":null,"url":null,"abstract":"Management of grasslands in Ghana has become so poor that most rural communities result in bushfires that cause a lot of environmental challenges. Grass could be used for biogas generation. This study investigated the effect of grass and food waste co-digestion on the biogas yield and clarified how the addition of grass enhances the AD performance. Grass (GR) mixed with the co-substrate food waste (FW) was then evaluated under anaerobic conditions for the production of biogas (methane). Five laboratory-scale reactors, R1 (100% FW, 0% GR), R2 (75% FW, 25% GR), R3 (50% FW, 50% GR), R4 (25% FW, 75% GR) and R5 (0% FW, 100% GR) were set up with different proportions of grass and food waste which had 8% total solid concentration. Digestion was carried out for twenty (20) days at room temperature, 35°C ± 2°C. The biogas yield in the R1, R2, R3, R4, R5 was 805, 840, 485, 243 and 418 mL respectively. Food waste only produced 805 mL and grass only produced 418 mL of biogas. Food waste only produced 50% more biogas than grass. However, co-digestion at 75% FW, 25% resulted in 6% more biogas than food waste only.","PeriodicalId":68148,"journal":{"name":"农业化学和环境(英文)","volume":"9 1","pages":"27-36"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"农业化学和环境(英文)","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.4236/jacen.2020.91003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Management of grasslands in Ghana has become so poor that most rural communities result in bushfires that cause a lot of environmental challenges. Grass could be used for biogas generation. This study investigated the effect of grass and food waste co-digestion on the biogas yield and clarified how the addition of grass enhances the AD performance. Grass (GR) mixed with the co-substrate food waste (FW) was then evaluated under anaerobic conditions for the production of biogas (methane). Five laboratory-scale reactors, R1 (100% FW, 0% GR), R2 (75% FW, 25% GR), R3 (50% FW, 50% GR), R4 (25% FW, 75% GR) and R5 (0% FW, 100% GR) were set up with different proportions of grass and food waste which had 8% total solid concentration. Digestion was carried out for twenty (20) days at room temperature, 35°C ± 2°C. The biogas yield in the R1, R2, R3, R4, R5 was 805, 840, 485, 243 and 418 mL respectively. Food waste only produced 805 mL and grass only produced 418 mL of biogas. Food waste only produced 50% more biogas than grass. However, co-digestion at 75% FW, 25% resulted in 6% more biogas than food waste only.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
草与食物垃圾共消化产生沼气
加纳的草原管理已经变得非常糟糕,以至于大多数农村社区都会引发丛林大火,这给环境带来了很多挑战。草可以用来产生沼气。本研究调查了草和食物垃圾共消化对沼气产量的影响,并阐明了草的添加如何提高AD性能。然后在厌氧条件下评估与共基质食物垃圾(FW)混合的草(GR)用于生产沼气(甲烷)。建立了五个实验室规模的反应器,R1(100%FW,0%GR)、R2(75%FW,25%GR)、R3(50%FW,50%GR)、R4(25%FW,75%GR)和R5(0%FW,100%GR),其中草和食物垃圾的总固体浓度为8%。在35°C±2°C的室温下消化二十(20)天。R1、R2、R3、R4、R5的沼气产量分别为805、840、485、243和418 mL。食物垃圾只产生805毫升沼气,草只产生418毫升沼气。食物垃圾产生的沼气只比草多50%。然而,在75%FW、25%FW的共同消化中产生的沼气比仅食物垃圾多6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
148
期刊最新文献
Drivers of the Chemical Quality of Market Gardening Soils in the Urban and Peri-Urban Environment of Bobo-Dioulasso (Burkina Faso): Impact of Fertilizers Sources and Sites Location Inventory of Host Plants and Parasitoids of the Fall Armyworm (FAW), Spodoptera frugiperda (JE Smith), in the Southern Agricultural Zone of Niger Rabbit Intensification Systems in Rwanda: Feeding Influence and Growth Inventory and Management of Fungi Associated with Banana Plant through the Use of Allium ampeloprasum and Cymbopogon citratus Extracts Potential Risks to the Environment as a Result of Pesticide Handling in the Nanumba-North Municipality, Ghana
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1