Short question-answers assessment using lexical and semantic similarity based features

Tameem Ahmad, Maksud Ahamad, Sayyed Usman Ahmed, Nesar Ahmad
{"title":"Short question-answers assessment using lexical and semantic similarity based features","authors":"Tameem Ahmad, Maksud Ahamad, Sayyed Usman Ahmed, Nesar Ahmad","doi":"10.1080/09720529.2022.2133245","DOIUrl":null,"url":null,"abstract":"Abstract Evaluation of short answers is a challenging task. As there could be more than one way of expressing the same thing in a sentence by quite different words and phrases, evaluation through computer-based system of Short answers requires natural language understanding. Study has performed comparative analysis for short answer assessment with regression algorithms namely: Support Vector Regression, Linear Regression, Bagging Tree, Boosting Tree, Multilayer Perceptron Regressor, and Random Forest on extracted features. It proposes the combined features that take account of lexical, approximate string matching, and semantic similarity features. An empirical evaluation of feature selection is also done that further improves the results. These combined features achieved improved results as 0.71 & 0.78 for correlation and RMSE values respectively.","PeriodicalId":46563,"journal":{"name":"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY","volume":"25 1","pages":"2057 - 2067"},"PeriodicalIF":1.2000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09720529.2022.2133245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Evaluation of short answers is a challenging task. As there could be more than one way of expressing the same thing in a sentence by quite different words and phrases, evaluation through computer-based system of Short answers requires natural language understanding. Study has performed comparative analysis for short answer assessment with regression algorithms namely: Support Vector Regression, Linear Regression, Bagging Tree, Boosting Tree, Multilayer Perceptron Regressor, and Random Forest on extracted features. It proposes the combined features that take account of lexical, approximate string matching, and semantic similarity features. An empirical evaluation of feature selection is also done that further improves the results. These combined features achieved improved results as 0.71 & 0.78 for correlation and RMSE values respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于词汇和语义相似性特征的短问答评估
摘要简短答案的评估是一项具有挑战性的任务。由于在一个句子中,用完全不同的单词和短语表达同一事物的方式可能不止一种,因此通过基于计算机的简短回答系统进行评估需要自然的语言理解。研究采用支持向量回归、线性回归、Bagging Tree、Boosting Tree、多层感知器回归和随机森林等回归算法对提取的特征进行了简短答案评估的比较分析。它提出了考虑词汇、近似字符串匹配和语义相似特征的组合特征。还对特征选择进行了实证评估,进一步改进了结果。这些组合特征分别获得了0.71和0.78的相关性和RMSE值的改进结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
21.40%
发文量
126
期刊最新文献
A4-graph for the twisted group 3D4 (3) Modern Metrics (MM): Software size estimation using function points for artificial intelligence and data analytics applications and finding the effort modifiers of the functional units using indian software industry Optimized deep learning methodology for intruder behavior detection and classification in cloud I-prime fuzzy submodules Information security based on sub-system keys generator by utilizing polynomials method and logic gate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1