{"title":"Spatial dependency analysis to extract information from side-channel mixtures: extended version","authors":"Aurélien Vasselle, Hugues Thiebeauld, P. Maurine","doi":"10.1145/3474376.3487280","DOIUrl":null,"url":null,"abstract":"Practical side-channel attacks on recent devices may be challenging due to the poor quality of acquired signals. It can originate from different factors, such as the growing architecture complexity, especially in System-on-Chips, creating unpredictable and concurrent operation of multiple signal sources in the device. This work makes use of mixture distributions to formalize this complexity, allowing us to explain the benefit of using a technique like Scatter, where different samples of the traces are aggregated into the same distribution. Some observations of the conditional mixture distributions are made in order to model the leakage in such context. From this, we infer local coherency of information held in the distribution as a general expression of the leakage in mixture distributions. This leads us to introduce how spatial analysis tools, such as Moran’s Index, can be used to significantly improve non-profiled attacks compared to other techniques from the state-of-the-art. Exploitation of this technique is experimentally shown very promising, as demonstrated by its application on two AES implementations including masking and shuffling countermeasures.","PeriodicalId":48508,"journal":{"name":"Journal of Cryptographic Engineering","volume":"1 1","pages":"1-17"},"PeriodicalIF":1.5000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cryptographic Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3474376.3487280","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 3
Abstract
Practical side-channel attacks on recent devices may be challenging due to the poor quality of acquired signals. It can originate from different factors, such as the growing architecture complexity, especially in System-on-Chips, creating unpredictable and concurrent operation of multiple signal sources in the device. This work makes use of mixture distributions to formalize this complexity, allowing us to explain the benefit of using a technique like Scatter, where different samples of the traces are aggregated into the same distribution. Some observations of the conditional mixture distributions are made in order to model the leakage in such context. From this, we infer local coherency of information held in the distribution as a general expression of the leakage in mixture distributions. This leads us to introduce how spatial analysis tools, such as Moran’s Index, can be used to significantly improve non-profiled attacks compared to other techniques from the state-of-the-art. Exploitation of this technique is experimentally shown very promising, as demonstrated by its application on two AES implementations including masking and shuffling countermeasures.
期刊介绍:
The Journal of Cryptographic Engineering (JCEN) presents high-quality scientific research on architectures, algorithms, techniques, tools, implementations and applications in cryptographic engineering, including cryptographic hardware, cryptographic embedded systems, side-channel attacks and countermeasures, and embedded security. JCEN serves the academic and corporate R&D community interested in cryptographic hardware and embedded security.JCEN publishes essential research on broad and varied topics including:Public-key cryptography, secret-key cryptography and post-quantum cryptographyCryptographic implementations include cryptographic processors, physical unclonable functions, true and deterministic random number generators, efficient software and hardware architecturesAttacks on implementations and their countermeasures, such as side-channel attacks, fault attacks, hardware tampering and reverse engineering techniquesSecurity evaluation of real-world cryptographic systems, formal methods and verification tools for secure embedded design that offer provable security, and metrics for measuring securityApplications of state-of-the-art cryptography, such as IoTs, RFIDs, IP protection, cyber-physical systems composed of analog and digital components, automotive security and trusted computing