P. Rubel, J. Fayn, P. Macfarlane, D. Pani, A. Schlögl, A. Värri
{"title":"The History and Challenges of SCP-ECG: The Standard Communication Protocol for Computer-Assisted Electrocardiography","authors":"P. Rubel, J. Fayn, P. Macfarlane, D. Pani, A. Schlögl, A. Värri","doi":"10.3390/hearts2030031","DOIUrl":null,"url":null,"abstract":"Ever since the first publication of the standard communication protocol for computer-assisted electrocardiography (SCP-ECG), prENV 1064, in 1993, by the European Committee for Standardization (CEN), SCP-ECG has become a leading example in health informatics, enabling open, secure, and well-documented digital data exchange at a low cost, for quick and efficient cardiovascular disease detection and management. Based on the experiences gained, since the 1970s, in computerized electrocardiology, and on the results achieved by the pioneering, international cooperative research on common standards for quantitative electrocardiography (CSE), SCP-ECG was designed, from the beginning, to empower personalized medicine, thanks to serial ECG analysis. The fundamental concept behind SCP-ECG is to convey the necessary information for ECG re-analysis, serial comparison, and interpretation, and to structure the ECG data and metadata in sections that are mostly optional in order to fit all use cases. SCP-ECG is open to the storage of the ECG signal and ECG measurement data, whatever the ECG recording modality or computation method, and can store the over-reading trails and ECG annotations, as well as any computerized or medical interpretation reports. Only the encoding syntax and the semantics of the ECG descriptors and of the diagnosis codes are standardized. We present all of the landmarks in the development and publication of SCP-ECG, from the early 1990s to the 2009 International Organization for Standardization (ISO) SCP-ECG standards, including the latest version published by CEN in 2020, which now encompasses rest and stress ECGs, Holter recordings, and protocol-based trials.","PeriodicalId":93563,"journal":{"name":"Hearts (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hearts (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hearts2030031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Ever since the first publication of the standard communication protocol for computer-assisted electrocardiography (SCP-ECG), prENV 1064, in 1993, by the European Committee for Standardization (CEN), SCP-ECG has become a leading example in health informatics, enabling open, secure, and well-documented digital data exchange at a low cost, for quick and efficient cardiovascular disease detection and management. Based on the experiences gained, since the 1970s, in computerized electrocardiology, and on the results achieved by the pioneering, international cooperative research on common standards for quantitative electrocardiography (CSE), SCP-ECG was designed, from the beginning, to empower personalized medicine, thanks to serial ECG analysis. The fundamental concept behind SCP-ECG is to convey the necessary information for ECG re-analysis, serial comparison, and interpretation, and to structure the ECG data and metadata in sections that are mostly optional in order to fit all use cases. SCP-ECG is open to the storage of the ECG signal and ECG measurement data, whatever the ECG recording modality or computation method, and can store the over-reading trails and ECG annotations, as well as any computerized or medical interpretation reports. Only the encoding syntax and the semantics of the ECG descriptors and of the diagnosis codes are standardized. We present all of the landmarks in the development and publication of SCP-ECG, from the early 1990s to the 2009 International Organization for Standardization (ISO) SCP-ECG standards, including the latest version published by CEN in 2020, which now encompasses rest and stress ECGs, Holter recordings, and protocol-based trials.