{"title":"Effect of drying methods on physico-chemical and bioactive compounds of mandarin (citrus reticulata) peel","authors":"Amit Kumar, Rahul Kumar Rout, P. S. Rao","doi":"10.1515/ijfe-2022-0121","DOIUrl":null,"url":null,"abstract":"Abstract Mandarin peel, an agro waste has an immense potential for bio utilization. The present study highlights the effect of drying on the physicochemical and biochemical properties of dried mandarin peel. Microwave drying and forced air drying accomplished at three different power levels (180, 360 and 540 W) and temperatures (30, 50 and 70 °C), respectively, while freeze drying was carried out at shelf temperature of –35 °C. The results revealed highest recovery of bioactive compounds from microwave drying at 540 W viz total phenolic (43.61 mg GAE/g), flavonoid (8.08 mg QE/g), tannin (8.73 mg GAE/g), saponin (159.91 mg EE/g−1), as well as, gallic acid antioxidant activity (3.58 mg GAEAC/g) and ferric reducing antioxidant power (50.61 mg TE/g−1). Furthermore, results from HPLC and UV–vis spectroscopy revealed presence of major polyphenols in dried peel. Microwave drying can be concluded as an industrial method for the bio utilization of mandarin peel.","PeriodicalId":13976,"journal":{"name":"International Journal of Food Engineering","volume":"18 1","pages":"689 - 700"},"PeriodicalIF":1.6000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1515/ijfe-2022-0121","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Mandarin peel, an agro waste has an immense potential for bio utilization. The present study highlights the effect of drying on the physicochemical and biochemical properties of dried mandarin peel. Microwave drying and forced air drying accomplished at three different power levels (180, 360 and 540 W) and temperatures (30, 50 and 70 °C), respectively, while freeze drying was carried out at shelf temperature of –35 °C. The results revealed highest recovery of bioactive compounds from microwave drying at 540 W viz total phenolic (43.61 mg GAE/g), flavonoid (8.08 mg QE/g), tannin (8.73 mg GAE/g), saponin (159.91 mg EE/g−1), as well as, gallic acid antioxidant activity (3.58 mg GAEAC/g) and ferric reducing antioxidant power (50.61 mg TE/g−1). Furthermore, results from HPLC and UV–vis spectroscopy revealed presence of major polyphenols in dried peel. Microwave drying can be concluded as an industrial method for the bio utilization of mandarin peel.
期刊介绍:
International Journal of Food Engineering is devoted to engineering disciplines related to processing foods. The areas of interest include heat, mass transfer and fluid flow in food processing; food microstructure development and characterization; application of artificial intelligence in food engineering research and in industry; food biotechnology; and mathematical modeling and software development for food processing purposes. Authors and editors come from top engineering programs around the world: the U.S., Canada, the U.K., and Western Europe, but also South America, Asia, Africa, and the Middle East.